Advertisement

Technical Physics

, Volume 60, Issue 4, pp 575–582 | Cite as

Evolution of the polarization of the He-Ne-laser radiation in a rotating insulator

  • V. O. Gladyshev
  • D. I. Portnov
Optics

Abstract

The propagation of the polarized coherent radiation of a He-Ne laser in a rotating insulator is experimentally studied. The reversible transient process of the rotation of the polarization plane and variations in the degree of ellipticity, depolarization, and deflection of the laser beam with a relaxation time of τ = 102–103 s are observed at an insulator rotation frequency of f = 2–250 Hz.

Keywords

Optical Disk Rotation Frequency Polarization Plane Ellipticity Angle Polarization Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Fermi, Rend. Lincei 32, 115 (1923).Google Scholar
  2. 2.
    R. V. Jones, Proc. R. Soc. London, Ser. A: Math. Phys. 349, 423 (1976).CrossRefADSGoogle Scholar
  3. 3.
    V. O. Gladyshev, D. I. Portnov, V. L. Kauts, and E. A. Sharandin, Opt. Spectrosc. 115, 349 (2013).CrossRefADSGoogle Scholar
  4. 4.
    V. O. Gladyshev, P. S. Tiunov, A. D. Leont’ev, T. M. Gladysheva, and E. A. Sharandin, Tech. Phys. 57, 1519 (2012).CrossRefGoogle Scholar
  5. 5.
    M. Padgett, G. Whyte, J. Girkin, A. Wright, L. Allen, P. Ohberg, and S. M. Barnett, Opt. Lett. 31, 2205 (2006).CrossRefADSGoogle Scholar
  6. 6.
    L. Allen and M. Padgett, J. Mod. Opt. 54, 487 (2007).CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    S. Franke-Arnold, G. Gibson, R. W. Boyd, and M. J. Padgett, Science 333, 65 (2011).CrossRefADSGoogle Scholar
  8. 8.
    V. O. Gladyshev, JETP Lett. 58, 569 (1993).ADSGoogle Scholar
  9. 9.
    N. N. Rozanov and G. B. Sochilin, Phys. Usp. 49, 407 (2006).CrossRefADSGoogle Scholar
  10. 10.
    V. O. Gladyshev, Tech. Phys. 44, 566 (1999).CrossRefGoogle Scholar
  11. 11.
    K. Vollrath and G. Thomer, Kurzzeitphysik/Physique des Phenomenes Ultra-Rapides/High-Speed Physics (Springer, Wien, 1967).Google Scholar
  12. 12.
    S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd ed. (McGraw-Hill, New York, 1970).MATHGoogle Scholar
  13. 13.
    G. O. Karapetyan, Yu. G. Korolev, L. V. Maksimov, and S. V. Nemilov, Fiz. Khim. Stekla 12, 598 (1986).Google Scholar
  14. 14.
    N. F. Borrelli and W. H. Dumbaugh, Proc. SPIE 843, 6 (1987).CrossRefADSGoogle Scholar
  15. 15.
    N. F. Borrelli, B. G. Aitken, M. A. Newhouse, and D. W. Hall, J. Appl. Phys. 70, 2774 (1991).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Bauman State Technical UniversityMoscowRussia

Personalised recommendations