Technical Physics

, Volume 60, Issue 3, pp 350–358 | Cite as

Two-phase flow dynamics during boiling of R134a refrigerant in minichannels

Gases and Liquids
  • 72 Downloads

Abstract

This study is devoted to complex experimental investigation of two-phase flow boiling of R134a refrigerant in a minichannel having a hydraulic diameter of 540 μm at heat fluxes up to 70 kW/m2 and mass fluxes up to 700 kg/(m2 s). Flow regimes, pressure drop, heat transfer coefficient, and behavior of instabilities are analyzed as functions of vapor quality. On the basis of experimental data, the methods for calculating two-phase pressure drop in a minichannel with a diameter of about 500 μm are determined, and new correlation is proposed for estimating the heat-transfer coefficient; the region of stable boiling of the refrigerant is also determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Kalnin’, Kholod. Tekh., No. 3, 12 (2008).Google Scholar
  2. 2.
    I. M. Kalnin’, Kholod. Tekh., No. 1, 42 (2012).Google Scholar
  3. 3.
    O. B. Tsvetkov, Kholod. Tekh., No. 1, 4 (2013).Google Scholar
  4. 4.
    M. Johnson and P. Hrnjak, Air Conditioning and Refrigeration Center at the University of Illinois at Urbana Champaign (UIUC ACRC) Tech. Rep., 2009, p. 170.Google Scholar
  5. 5.
    S. G. Kandlikar, Experimental Thermal and Fluid Science 26, 389 (2002).CrossRefGoogle Scholar
  6. 6.
    V. E. Nakoryakov and V. V. Kuznetsov, in Proceedings of the 4th Russian National Conference on Heat Transfer (RNKT-4), Moscow, 2006 (Dom MEI, Moscow, 2006), pp. 33–38 [in Russian].Google Scholar
  7. 7.
    S. G. Kandlikar, J. Heat Transfer 134, 034001 (2012).CrossRefGoogle Scholar
  8. 8.
    S. G. Kandlikar, S. Garimella, D. Li, S. Colin, and M. R. King, Heat Transfer and Fluid Flow in Minichannels and Microchannels (Elsevier, Oxford, 2006).Google Scholar
  9. 9.
    P. V. Carey, Liquid Vapor Phase Change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment, 2nd ed. (Taylor & Francis, Oxford, 2008).Google Scholar
  10. 10.
    R. Revelline, “Experimental two-phase fluid flow in microchannels,” PhD Thesis No. 3437 (Ecole Polytechnique Federale de Lausanne, 2005).Google Scholar
  11. 11.
    L. Tadrist, Int. J. Heat Fluid Flow 28, 54 (2007).CrossRefGoogle Scholar
  12. 12.
    B. S. Babakin, Alternative Refrigerants and Service of Related Refrigeration Systems (Kolos, Moscow, 2000) [in Russian].Google Scholar
  13. 13.
    V. N. Tselikov, Kholod. Tekh., No. 11, 4 (2009).Google Scholar
  14. 14.
    D. M. Khovalyg and A. V. Baranenko, Vestn. Mezhdunar. Akad. Kholoda, No. 1, 3 (2012).Google Scholar
  15. 15.
    D. M. Khovalyg and A. V. Baranenko, Vestn. Mezhdunar. Akad. Kholoda., No. 4, 3 (2013).Google Scholar
  16. 16.
    H. Y. Wu and P. Cheng, Int. J. Heat Mass Transf. 47, 3631 (2004).CrossRefGoogle Scholar
  17. 17.
    G. Hesteroni, A. Mosyak, E. Pogrebnyak, and Z. Segal, Int. J. Multiphase Flow 32, 1141 (2006).CrossRefGoogle Scholar
  18. 18.
    H. J. Lee, D. Y. Liu, and S. Yao, Int. J. Heat Mass Transf. 53, 1740 (2010).CrossRefMATHGoogle Scholar
  19. 19.
    P. Balasubramanian and S. G. Kandlikar, Heat Transfer Eng, 26(3), 20 (2005).CrossRefADSGoogle Scholar
  20. 20.
    D. M. Khovalyg and A. V. Baranenko, Kholod. Tekh., No. 10, 45 (2013).Google Scholar
  21. 21.
    H. Tuo and P. S. Hrnjak, Int. J. Heat Mass Transf. 71, 639 (2014).CrossRefGoogle Scholar
  22. 22.
    D. Brutin and L. Tadrist, J. Thermophys. Heat Transfer 20, 850 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations