Skip to main content
Log in

Hybrid simulation of collisionless shock waves in space plasma

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A new version of a multiprocessor 3D hybrid code is described, which makes it possible to simulate the formation and evolution of collisionless shock waves in a multicomponent space plasma with ions of different masses and charge states. The algorithm ensures exact conservation of zero magnetic field divergence and self-consistent electric field dynamics and is of the second order of accuracy in time. The peculiarities of the effect of the boundary conditions at the reflecting wall on the formation of quasi-parallel and quasi-perpendicular shock waves are analyzed. It is shown that the rates of collisionless relaxation of ions to quasi-equilibrium distributions for quasi-longitudinal and quasi-transverse shock waves are substantially different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. E. Korreck, J. C. Raymond, T. H. Zurbuchen, and P. Ghavamian, Astrophys. J. 615, 280 (2004).

    Article  ADS  Google Scholar 

  2. J. C. Raymond, P. Ghavamian, and R. Sankrit, Astrophys. J. 594, 770 (2003).

    Article  ADS  Google Scholar 

  3. J.-J. Lee, J. C. Raymond, S. Park, et al., Astrophys. J. 715, L146 (2010).

    Article  ADS  Google Scholar 

  4. S. I. Vainshtein, A. M. Bykov, and I. N. Toptygin, Turbulence, Current Sheets and Shocks in Cosmic Plasma (Gordon & Breach, Williston-Vermont, 1993).

    Google Scholar 

  5. A. M. Bykov, K. Dolag, and F. Durret, Space Sci. Rev. 134, 119 (2008).

    Article  ADS  Google Scholar 

  6. D. Burgess and M. Scholer, Space Sci. Rev. 178, 513 (2013).

    Article  ADS  Google Scholar 

  7. D. Caprioli and A. Spitkovsky, E-print arxiv: astro-ph/1310.2943 (2013).

  8. D. Winske, Space Sci. Rev. 42, 53 (1985).

    Article  ADS  Google Scholar 

  9. Alan P Matthews, J. Comput. Phys. 112, 102 (1994).

    Article  ADS  MATH  Google Scholar 

  10. A. S. Lipatov, The Hybrid Multiscale Simulation Technology (Springer, Berlin, 2002).

    Book  MATH  Google Scholar 

  11. L. Gargaté and A. Spitkovsky, Astrophys. J. 744, 67 (2012).

    Article  ADS  Google Scholar 

  12. D. Caprioli and A. Spitkovsky, E-print arXiv: astro-ph/1401.7679 (2014).

  13. L. Gargaté, R. Bingham, R. A. Fonseca, and L. O. Silva, Comput.Phys. Commun. 176, 419 (2007).

    Article  ADS  MATH  Google Scholar 

  14. D. S. Balsara, Astrophys. J., Suppl. 151, 149 (2004).

    Article  ADS  Google Scholar 

  15. R. J. LeVeque, D. Mikhalas, E. A. Dorfi, and E. Muller, Computational Methods for Astrophysical Fluid Flow (Springer, Berlin, 1997).

    Google Scholar 

  16. D. Winske and N. Omidi, Hybrid Codes. Methods and Applications. Computer Space Plasma Physics: Simulation Techniques and Softwares, Ed. by H. Matsumoto and Y. Omura (Tokyo, 1993), pp. 103–160.

  17. D. S. Filippychev, Comp. Math. Model. 11, 15 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  18. S. K. Godunov, A. V. Zabrodin, M. Ya. Ivanov, G. P. Prokopov, and A. N. Kraiko, Numerical Solution to Multidimensional Problems of Gas Dynamics (Nauka, Moscow, 1976).

    Google Scholar 

  19. D. S. Balsara, Astrophys. J. 116, 119 (1998).

    Article  ADS  Google Scholar 

  20. P. L. Pritchett, Space Plasma Simulation, Ed. by J. Büchner, C. T. Dum, and M. Scholer (Springer, Berlin-Heidelberg, 2001), p. 1.

  21. J. M. Dawson, Rev. Mod. Phys. 55, 403 (1983).

    Article  ADS  Google Scholar 

  22. V. V. Voevodin and Vl. V. Voevodin, Parallel Computing (BKhV-Sankt-Peterburg, St. Petersburg, 2002).

    Google Scholar 

  23. K. Iwamoto, F. Brachwitz, K. Nomoto, et al., Astrophys. J., Suppl. 125, 439 (1999).

    Article  ADS  Google Scholar 

  24. F.-K. Thielemann and R. Hirschi, E-print arxiv:1008.2144 (2010).

  25. S. E. Woosley, A. Heger, and T. A. Weaver, Rev. Mod. Phys. 74, 1015 (2002).

    Article  ADS  Google Scholar 

  26. C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (IOP, Bristol, 1991), p. 373.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Krassilchtchikov.

Additional information

Original Russian Text © Yu.A. Kropotina, A.M. Bykov, M.Yu. Gustov, A.M. Krassilchtchikov, K.P. Levenfish, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 2, pp. 73–81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kropotina, Y.A., Bykov, A.M., Gustov, M.Y. et al. Hybrid simulation of collisionless shock waves in space plasma. Tech. Phys. 60, 231–239 (2015). https://doi.org/10.1134/S1063784215020139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215020139

Keywords

Navigation