Advertisement

Technical Physics

, Volume 59, Issue 9, pp 1267–1276 | Cite as

Effect of electric and magnetic fields on the orientation structure of a ferronematic liquid crystal

  • A. N. Zakhlevnykh
  • D. V. Makarov
Theoretical and Mathematical Physics

Abstract

We analyze uniform orientation phases in soft ferronematics (suspensions of magnetic nanoparticles in nematic liquid crystals) induced by electric and magnetic fields. It is shown that the competition between the electric and magnetic fields can lead to various sequences of orientation transitions in a ferronematic depending on the energy of coupling between the director and magnetization. We obtain and analyze phase diagrams of these transitions. A sequence of re-entrant transitions in the orientation structure (angular phase-homeotropic phase-angular phase-planar phase) is predicted for a certain range of the coupling energies and electric field strengths.

Keywords

Magnetic Field Field Strength Magnetic Field Strength Electric Field Strength Magnetic Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. A. Garbovskiy and A. V. Glushchenko, Solid State Physics 62, 1 (2010).Google Scholar
  2. 2.
    S. M. Shelestiuk, V. Yu. Reshetnyak, and T. J. Sluckin, Phys. Rev. E 83, 041705 (2011).CrossRefADSGoogle Scholar
  3. 3.
    N. Podoliak, O. Buchnev, O. Buluy, G. D’Alessandro, M. Kaczmarek, Y. Reznikov, and T. J. Sluckin, Soft Matter. 7, 4742 (2011).CrossRefADSGoogle Scholar
  4. 4.
    N. Podoliak, O. Buchnev, D. V. Bavykin, A. N. Kulak, M. Kaczmarek, and T. J. Sluckin, J. Colloid Interface Sci. 386, 158 (2012).CrossRefGoogle Scholar
  5. 5.
    N. Tomasovicova, M. Timko, Z. Mitroova, M. Koneracka, M. Rajnak, N. Eber, T. Toth-Katona, X. Chaud, J. Jadzyn, and P. Kopcansky, Phys. Rev. E 87, 014501 (2013).CrossRefADSGoogle Scholar
  6. 6.
    Y. L. Raikher, V. I. Stepanov, and A. N. Zakhlevnykh, Soft Matter. 9, 177 (2013).CrossRefADSGoogle Scholar
  7. 7.
    F. Brochard and P. G. de Gennes, J. Phys. (France) 31, 691 (1970).CrossRefGoogle Scholar
  8. 8.
    A. Zakhlevnykh and V. Shavkunov, Mol. Cryst. Liq. Cryst. A 330, 593 (1999).CrossRefGoogle Scholar
  9. 9.
    A. N. Zakhlevnykh and V. S. Shavkunov, Mol. Cryst. Liq. Cryst. A 367, 175 (2001).CrossRefGoogle Scholar
  10. 10.
    A. N. Zakhlevnykh and O. R. Semenova, Mol. Crys. Liq. Crys. 540, 219 (2011).CrossRefGoogle Scholar
  11. 11.
    D. V. Makarov and A. N. Zakhlevnykh, Mol. Cryst. Liq. Cryst. 553, 199 (2012).CrossRefGoogle Scholar
  12. 12.
    D. V. Makarov and A. N. Zakhlevnykh, Soft Matter. 8, 6493 (2012).CrossRefGoogle Scholar
  13. 13.
    A. N. Zakhlevnykh, J. Magn. Magn. Mater. 269, 238 (2004).CrossRefADSGoogle Scholar
  14. 14.
    S. V. Burylov and A. N. Zakhlevnykh, Phys. Rev. E 88, 012511 (2013).CrossRefADSGoogle Scholar
  15. 15.
    S. V. Burylov and A. N. Zakhlevnykh, Phys. Rev. E 88, 052503 (2013).CrossRefADSGoogle Scholar
  16. 16.
    S. V. Burylov and Y. L. Raikher, Mol. Cryst. Liq. Cryst. 258, 107 (1995).CrossRefGoogle Scholar
  17. 17.
    S. V. Burylov and Y. L. Raikher, Mol. Cryst. Liq. Cryst. 258, 123 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Perm State UniversityPermRussia

Personalised recommendations