Technical Physics

, Volume 59, Issue 7, pp 951–958 | Cite as

Electron-impact ionization and dissociative ionization of sulfur in the gas phase

  • A. N. Zavilopulo
  • P. P. Markush
  • O. B. Shpenik
  • M. I. Mykyta
Atomic and Molecular Physics


We describe the methods and the results of investigation of the yield of positive ions formed as a result of electron-impact ionization of sulfur. The ionization energy for the basic molecule and the energies corresponding to the emergence of fragment ions are obtained from the ionization efficiency curves. The dynamics of formation of molecular sulfur ions in the temperature range 320–700 K is investigated. The energy dependences of efficiency S n of the ion formation for n = 1–6 are analyzed, and their appearance energies are determined. The total cross section of sulfur ionization by a monochromatic electron beam is also investigated. Using the linear approximation method, we marked out features on the ionization function curve, which correspond to the ionization and excitation energies for multiply charged ions. The total cross section of the formation of negative sulfur ions is measured in the energy range 0–9 eV.


Total Cross Section Energy Dependence Electron Impact Ionization Dissociative Ionization Appearance Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed. (Butterworth-Heinemann, Oxford, 1997), pp. 645–662.Google Scholar
  2. 2.
    L. M. Feaga, M. A. McGrath, and P. D. Feldman, Astrophys. 570, 439 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    A. N. Zavilopulo, O. B. Shpenik, P. P. Markush, et al., Tech. Phys. Lett. 40, 13 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    J. E. Kontros, L. Szotér, I. V. Chernyshova, et al., J. Phys. B 35, 2195 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    M. I. Mykyta and A. N. Zavilopulo, Vestn. Uzhgorodsk. Univ., Ser. Fiz., No. 3, 168 (2011).Google Scholar
  6. 6.
    A. N. Zavilopulo, E. A. Mironets, and A. S. Agafonova, Prib. Tekh. Eksp., No. 1, 73 (2012).Google Scholar
  7. 7.
    A. N. Zavilopulo, M. I. Mykyta, and O. B. Shpenik, Tech. Phys. 57, 923 (2012).CrossRefGoogle Scholar
  8. 8.
    M. Arnold, J. Kowalski, T. Stehlin, et. al., Z. Phys. D: At., Mol. Clusters 3, 329 (1986).CrossRefGoogle Scholar
  9. 9.
    G. Dudek and E. P. Dudek, J. Chem. Educ. 66, 304 (1969).CrossRefGoogle Scholar
  10. 10.
    P. Bradt, F. L. Mohler, and V. H. Dibeler, J. Res. Natl. Bur. Stand. 57, 223 (1956).CrossRefGoogle Scholar
  11. 11.
    NIST Standard Reference Database.
  12. 12.
    J. Berkowitz and J. R. Marquart, J. Chem. Phys. 39, 275 (1963).ADSCrossRefGoogle Scholar
  13. 13.
    Handbook of Chemistry, Ed. by B. P. Nikol’skii (Khimiya, Moscow-Leningrad, 1982), Vol. 1, p. 729.Google Scholar
  14. 14.
    A. N. Kozlov, G. A. Lyakhov, Yu. V. Pavlov, et al., Tech. Phys. Lett. 25, 517 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    A. N. Zavilopulo, F. F. Chipev, and O. B. Shpenik, Tech. Phys. 50, 402 (2005).CrossRefGoogle Scholar
  16. 16.
    S. J. Brottona and J. W. McConkey, J. Chem. Phys. 134, 204301 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    W. Rosinger, M. Grade, and W. Hirschwald, Int. J. Mass Spectrom. Ion Phys. 47, 239 (1983).CrossRefGoogle Scholar
  18. 18.
    M. Urban, J. H. F. Diercksen, and M. Jurek, Mol. Phys. 94, 199 (1988).ADSCrossRefGoogle Scholar
  19. 19.
    Y. Le Coat, L. Bouby, J. P. Guillotin, et al., J. Phys. B 29, 545 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. N. Zavilopulo
    • 1
  • P. P. Markush
    • 1
  • O. B. Shpenik
    • 1
  • M. I. Mykyta
    • 1
  1. 1.Institute of Electron PhysicsUkrainian National Academy of SciencesUzhgorodUkraine

Personalised recommendations