Advertisement

Technical Physics

, Volume 59, Issue 4, pp 624–627 | Cite as

Appearance conditions for a semiconducting-substrate-induced gap in the density of states in epitaxial graphene

  • S. Yu. Davydov
Short Communications

Abstract

The density of states in a semiconducting substrate is described with a model assuming a parabolic electronic spectrum. Analytical criteria for the appearance of a gap (gaps) in the density of states in epitaxial graphene are derived, and its (their) parameters (width and position relative to the forbidden gap of the substrate) are found. A way to experimentally verify analytical data is suggested.

Keywords

Haldane Anderson Model Dirac Point Epitaxial Graphene Semiconducting Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2008).CrossRefGoogle Scholar
  2. 2.
    J. Haas, W. A. de Heer, and E. H. Conrad, J. Condens. Matter. 20, 323202 (2008).CrossRefGoogle Scholar
  3. 3.
    Y. H. Wu, T. Yu, and Z. X. Shen, J. Appl. Phys. 108, 071301 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, and V. Yu, arXiv:condmat/1110.6557.Google Scholar
  5. 5.
    S. Yu. Davydov, Semiconductors 47, 95 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    S. Yu. Davydov, Tech. Phys. Lett. 39, 101 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    F. D. M. Haldane and P. W. Anderson, Phys. Rev. B 13, 2553 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    P. S. Kireev, Semiconductor Physics (Mir, Moscow, 1969).Google Scholar
  9. 9.
    C. Persson and U. Lindefelt, Mater. Sci. Forum 264–268, 275 (1998).CrossRefGoogle Scholar
  10. 10.
    F. Varshon, R. Feng, J. Hass, X. Li, B. N. Nguen, C. Naud, P. Mallet, J.-Y. Veuillen, C. Berger, E. H. Conrad, and L. Magaud, Phys. Rev. Lett. 99, 126805 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Phys. Rev. Lett. 103, 246804 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    D. A. Siegel, C. G. Hwang, A. V. Fedorov, and A. Lanzara, Phys. Rev. B 81, 241417 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    C. Mathieu, N. Barrett, J. Rault, Y. Y. Mi, B. Zhang, W. A. de Heer, C. Berger, E. H. Conra, and O. Renault, arXiv:cond-mat/1104.1359.Google Scholar
  14. 14.
    N. Srivastava, G. He, A. Luxmi, and R. M. Feensta, Phys. Rev. B 85, 041404 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    S. Yu. Davydov, Semiconductors 41, 621 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations