Technical Physics

, Volume 59, Issue 1, pp 85–92 | Cite as

Influence of the phase and elemental compositions and defect structure on the physicomechanical properties and tribotechnical characteristics of nanostructural Ti-Hf-Si-N coatings

  • A. D. Pogrebnjak
  • M. V. Kaverin
  • V. M. Beresnev
Physics of Nanostructures


A new approach to preparing superhard nanostructural Ti-Hf-Si-N coatings with high physicomechanical performance is developed and tested. Samples with Ti-Hf-Si-N nanocoatings obtained under different deposition conditions were investigated using nuclear physical analysis methods, namely, Rutherford backscattering, energy-dispersive X-ray analysis, secondary-ion mass spectrometry, and the slow positron beam method, as well as by conducting X-ray diffraction analysis and microhardness measurements and testing the tribotechnical performance of the films. It is found that the grain size varies from 3.9 to 10.0 nm depending on the bias applied to the substrate and the residual pressure in the chamber during nanocoating deposition. It is shown that the microhardness varies considerably (from 37.4 to 48.6 ± 1.2 GPa) according to the percentage and number of phases, grain size, and material transfer along nanograin boundaries and interfaces. In tribological tests of the Ti-Hf-Si-N nanocoatings, the mechanism of cohesive and adhesive fracture changes and the friction coefficient may vary from 0.46 to 0.15.


Friction Coefficient Nanostructural Coating Nanograin Boundary Hafnium Concentration Texture Crystallite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Pogrebnjak, A. G. Ponomarev, A. P. Shpak, and Yu. A. Kunitskii, Phys. Usp. 55, 270 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    J. Musil, J. Vlcek, and P. Zeman, Adv. Appl. Ceram. 107, 148 (2008).CrossRefGoogle Scholar
  3. 3.
    A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, Phys. Usp. 52, 29 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    R. F. Zhang, A. S. Argon, and S. Veprek, Phys. Rev. 79, 245 (2009).Google Scholar
  5. 5.
    W. F. Gale and T. C. Totemeier, Smithells Metals Reference Book (Butterworth-Heinemann, Oxford, 1976).Google Scholar
  6. 6.
    A. D. Pogrebnjak, O. V. Sobol, and V. M. Beresnev, Nanostruct. Mater. Nanotechnol. IV: Ceram. Eng. Sci. Proc. 31, 127 (2010).CrossRefGoogle Scholar
  7. 7.
    A. D. Pogrebnjak, Sh. M. Ruzimov, D. L. Alotseva, et al., Vacuum 81, 1243 (2007).CrossRefGoogle Scholar
  8. 8.
  9. 9.
    A. D. Pogrebnyak, A. G. Ponomarev, D. A. Kolesnikov, V. M. Beresnev, F. F. Komarov, S. S. Mel’nik, and M. V. Kaverin, Tech. Phys. Lett. 38, 623 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors (Springer, Berlin, 1999).CrossRefGoogle Scholar
  11. 11.
    V. I. Grafutin, O. V. Ilyukhina, G. G. Myasishcheva, E. P. Prokop’ev, S. P. Timoshenkov, Yu. V. Funtikov, and R. Burtsl, Yad. Fiz. 72, 1730 (2009).Google Scholar
  12. 12.
    J. Kansy, Mater. Sci. Forum 652, 363 (2001).Google Scholar
  13. 13.
    V. I. Grafutin and E. P. Prokop’ev, Phys. Usp. 45, 59 (2002).ADSCrossRefGoogle Scholar
  14. 14.
    A. D. Pogrebnjak, A. P. Shpak, V. M. Beresnev, et al., J. Nanosci. Nanotechnol. 12, 9213 (2012).CrossRefGoogle Scholar
  15. 15.
    P. Konarski, I. Iwanejko, A. Mierzejewska, and R. Diduszko, Vacuum 63, 679 (2001).CrossRefGoogle Scholar
  16. 16.
    P. Konarski, I. Iwanejko, and A. Mierzejewska, Appl. Surf. Sci. 203–204, 757 (2003).CrossRefGoogle Scholar
  17. 17.
    A. D. Pogrebnjak, V. M. Beresnev, A. A. Demianenko, V. S. Baidak, F. F. Komarov, M. V. Kaverin, N. A. Makhmudov, and D. A. Kolesnikov, Phys. Solid State 54, 1882 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    A. D. Pogrebnyak, A. P. Shpak, V. M. Beresnev, G. V. Kirik, D. A. Kolesnikov, F. F. Komarov, P. Konarski, N. A. Makhmudov, M. V. Kaverin, and V. V. Grudnitskii, Tech. Phys. Lett. 37, 637 (2011).CrossRefGoogle Scholar
  19. 19.
    A. D. Pogrebnjak, M. M. Danilionok, V. V. Uglov, N. K. Erdybaeva, G. V. Kirik, V. S. Rusakov, A. P. Shypylenko, P. V. Zukovski, and Yu. Zh. Tuleushev, Vacuum 83, 235 (2009).CrossRefGoogle Scholar
  20. 20.
    A. V. Khomenko and I. A. Lyashenko, J. Frict. Wear 31, 308 (2010).CrossRefGoogle Scholar
  21. 21.
    A. D. Pogrebnyak, A. A. Drobyshevskaya, V. M. Beresnev, M. K. Kylyshkanov, G. V. Kirik, S. N. Dub, F. F. Komarov, A. P. Shipilenko, and Yu. Zh. Tuleushev, Tech. Phys. 56, 1023 (2011).CrossRefGoogle Scholar
  22. 22.
    A. V. Khomenko and N. V. Prodanov, Carbon 48, 1234 (2010).CrossRefGoogle Scholar
  23. 23.
    A. N. Valyaev, V. S. Ladysev, D. R. Mendygaliev, A. D. Pogrebnjak, A. A. Valyaev, and N. A. Pogrebnjak, Nucl. Instrum. Methods Phys. Res. B 171, 481 (2000).ADSCrossRefGoogle Scholar
  24. 24.
    A. G. Ponomarev, V. I. Miroshnichenko, and V. E. Storizhko, Nucl. Instrum. Meth. Phys. Res. A 506, 20 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. D. Pogrebnjak
    • 1
  • M. V. Kaverin
    • 1
  • V. M. Beresnev
    • 2
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Kharkiv National UniversityKharkivUkraine

Personalised recommendations