Technical Physics

, Volume 58, Issue 11, pp 1688–1691 | Cite as

Effect of the deposition parameters on the structure and physicochemical properties of protective Al2O3 coatings

  • A. D. Pogrebnyak
  • F. F. Komarov
  • A. Sh. Kaverina
  • O. V. Sobol’
  • Yu. N. Tyurin
  • A. I. Kupchishin
  • M. K. Kylyshkanov
Short Communications


Three series of Al2O3 coating samples are fabricated by microarc oxidation under various deposition conditions and are studied by scanning electron microscopy (SEM) in combination with energy-dispersive x-ray spectroscopy (EDXS), Rutherford backscattering, and X-ray diffraction. Defects and pores in the coatings are analyzed by positron annihilation spectroscopy at room temperature without vacuum. No nanometer pores are detected in the coatings. When changing the electrolyte-plasma oxidation conditions, one can change the concentration and the ratio of the types of vacancy defects in these Al2O3 coatings.


PIXE Deposition Parameter Positron Lifetime Rutherford Backscattering Vacancy Defect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. L. Yerokhin, X. Nie, A. Leyland, A. Metthews, and S. J. Dowey, Surf. Coat. Technol. 122, 73 (1999).CrossRefGoogle Scholar
  2. 2.
    A. D. Pogrebnyak and Yu. N. Tyurin, Tech. Phys. 47, 1463 (2002).CrossRefGoogle Scholar
  3. 3.
    Yu. N. Tyurin and A. D. Pogrebnjak Surf. Coat. Technol. 141-144, 293 (2001).CrossRefGoogle Scholar
  4. 4.
    A. D. Pogrebnyak and Yu. N. Tyurin, Tech. Phys. 49, 1064 (2004).CrossRefGoogle Scholar
  5. 5.
    A. D. Pogrebnjak, Sh. M. Ruzimov, D. L. Alontseva, et al., Vacuum 81, 1243 (2007).CrossRefGoogle Scholar
  6. 6.
    V. I. Grafutin, O. V. Ilyukhina, G. G. Myasishcheva, E. P. Prokop’ev, S. P. Timoshenkov, Yu. V. Funtikov, and R. Burtsl, Yad. Fiz. 72, 1730 (2009).Google Scholar
  7. 7.
    J. Kansy, Mater. Sci. Forum 652, 363 (2001).Google Scholar
  8. 8.
    R. Krause-Rehberg and H. S. Leipner, Positron Annihilation in Semiconductors (Springer, Berlin, 1999).CrossRefGoogle Scholar
  9. 9.
    N. Djourelov, C. A. Palacio, J. de Baerdemaeker, et al., J. Phys.: Condens. Matter 20, 95206 (2008).CrossRefGoogle Scholar
  10. 10.
    C. H. Shek, T. S. Gu, G. M. Lin, and J. K. L. Lai, Appl. Phys. A 66, 413 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    C. Dauwe and M. Tsumbu, Phys. Rev. B 45, 9 (1992).ADSCrossRefGoogle Scholar
  12. 12.
    W. Engelhart, W. Dreher, O. Eibl, and V. Schier, Acta Mater. 59, 7757 (2011).CrossRefGoogle Scholar
  13. 13.
    E. Volceanov, A. Volceanov, and S. Stoleriu, J. Eur. Ceram. Soc. 27, 759 (2007).CrossRefGoogle Scholar
  14. 14.
    T. Isobe, K. Daimon, and T. Sato, Ceram. Int. 34, 213 (2008).CrossRefGoogle Scholar
  15. 15.
    J. Musil, J. Blazek, P. Zeman, S. Proksova, M. Sasek, and R. Cerstvy, Appl. Surf. Sci. 257, 1058 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    A. D. Pogrebnyak, O. P. Kul’ment’eva, A. P. Kobzev, Yu. N. Tyurin, S. I. Golovenko, and A. G. Boiko, Tech. Phys. Lett. 29, 312 (2003).ADSCrossRefGoogle Scholar
  17. 17.
    A. D. Pogrebnyak, M. K. Kylyshkanov, Yu. N. Tyurin, and A. Sh. Kaverina, Tech. Phys. 57, 840 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. D. Pogrebnyak
    • 1
  • F. F. Komarov
    • 2
  • A. Sh. Kaverina
    • 1
  • O. V. Sobol’
    • 3
  • Yu. N. Tyurin
    • 4
  • A. I. Kupchishin
    • 5
  • M. K. Kylyshkanov
    • 6
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Belarussian State UniversityMinskBelarus
  3. 3.Kharkiv Polytechnic UniversityKharkivUkraine
  4. 4.Paton Electric Welding InstituteNational Academy of Sciences of UkraineKyivUkraine
  5. 5.Kazakh National Pedagogical UniversityAlmatyKazakhstan
  6. 6.Eastern-Kazakh State Technical UniversityUst’-KamenogorskKazakhstan

Personalised recommendations