Technical Physics

, Volume 58, Issue 10, pp 1481–1488 | Cite as

Optically pumped quantum magnetometer with combined advantages of M X and M Z devices

  • A. K. VershovskiiEmail author
  • S. P. Dmitriev
  • A. S. Pazgalev


A scheme of the magnetometer that simultaneously employs M X and M R magnetic resonance signals with the latter signal related to the radial component of the rotating atomic magnetic moment is proposed and tested. With respect to the shape, dynamic characteristics, and metrological parameters, the M R signal is similar to the M X signal that is widely used in magnetometry but the former signal can be detected simultaneously with the M X signal using a common radio optical scheme. The proposed device represents a fast M X magnetometer with the phase in the feedback loop that is controlled by a slow precise M R magnetometer implemented using the same atoms. The device that can be based on a conventional M X sensor simultaneously exhibits a relatively short response time (τ ≤ 0.1 s) and the accuracy that is approximately equal to the resolution of the quantum M X discriminator at times of 10–100 s. The scheme is experimentally tested, and the statistic estimate of reproducibility is (1.2 ± 1.1) pT.


Propor Tional Integral Controller Phase Detector Magnetic Resonance Signal Allan Variance Bloch Sphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Happer, Rev. Mod. Phys. 44, 169 (1972).ADSCrossRefGoogle Scholar
  2. 2.
    E. B. Aleksandrov and A. K. Vershovskii, Phys. Usp. 52, 573 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    D. Budker and M. V. Romalis, Nature Phys. 3, 227 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    A. Kastler, J. Phys. Radium 11, 255 (1950).CrossRefGoogle Scholar
  5. 5.
    A. Kastler, J. Opt. Soc. Am. 47, 460 (1957).ADSCrossRefGoogle Scholar
  6. 6.
    F. Bitter, Phys. Rev. 76, 833 (1949).ADSCrossRefGoogle Scholar
  7. 7.
    A. K. Vershovskii and A. S. Pazgalev, Tech. Phys. 51, 924 (2006).CrossRefGoogle Scholar
  8. 8.
    A. K. Vershovskii and E. B. Aleksandrov, Opt. Spectrosc. 100, 12 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    A. H. Allen and P. L. Bender, J. Geomagn. Geoelectr. 24, 105 (1972).CrossRefGoogle Scholar
  10. 10.
    E. Pulz, K.-H. Jackel, and H.-J. Linthe, Meas. Sci. Technol. 10, 1025 (1999).ADSCrossRefGoogle Scholar
  11. 11.
    E. B. Aleksandrov, M. B. Balabas, A. K. Vershovskii, and A. S. Pazgalev, Tech. Phys. 45, 931 (2000).CrossRefGoogle Scholar
  12. 12.
    A. K. Vershovskii and A. S. Pazgalev, Tech. Phys. Lett. 37, 23 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    F. Bloch, Phys. Rev. 70, 460 (1946).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. K. Vershovskii
    • 1
    Email author
  • S. P. Dmitriev
    • 1
  • A. S. Pazgalev
    • 1
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations