Advertisement

Technical Physics

, Volume 58, Issue 8, pp 1238–1241 | Cite as

Influence of the adiabatic index on switching between different types of shock wave reflection in a steady supersonic gas flow

  • L. G. Gvozdeva
  • S. A. Gavrenkov
Short Communications

Abstract

A comprehensive pattern of different types of shock wave reflection in a steady supersonic gas flow is analytically constructed with regard to a new wave configuration found by the authors-negative-angle irregular reflection. A double Mach reflection with a negative reflection angle in a steady supersonic gas flow is numerically obtained for the first time.

Keywords

Shock Wave Triple Point Adiabatic Index Mach Reflection Shock Wave Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Courant and K. O. Friedrichs, Supersonic Flows and Shock Waves (Intersicence, New York, 1948).Google Scholar
  2. 2.
    G. Ben-Dor, Shock Wave Reflection Phenomena (Springer, New York, 2007).zbMATHGoogle Scholar
  3. 3.
    H. G. Hornung and M. L. Robinson, J. Fluid Mech. 123, 155 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    H. G. Hornung, H. Oertel, and R. J. Sandeman, J. Fluid Mech. 90, 541 (1979).ADSCrossRefGoogle Scholar
  5. 5.
    A. Chpoun, D. Passerel, H. Li, and G. Ben-Dor, J. Fluid Mech. 301, 19 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    L. G. Gvozdeva, N. B. Sherbak, A. Chpoun, and D. Passerel, in Proceedings of the 20th International Symposiun on Shock Waves, Pasadena, California, 1995.Google Scholar
  7. 7.
    M. S. Ivanov, S. F. Gimelshein, and A. E. Beylich, Phys. Fluids 7, 685 (1995).ADSzbMATHCrossRefGoogle Scholar
  8. 8.
    M. S. Ivanov, A. N. Kudryavtsev, S. B. Nikiforov, and D. V. Khotyanovskii, Aeromekh. Gaz. Din., No. 3, 3 (2002).Google Scholar
  9. 9.
    L. G. Gvozdeva, “Conditions of instability of three shock configuration in steady flows,” in Proceedings of the 19th International Shock Interaction Symposium ISIS-19, Moscow, 2010.Google Scholar
  10. 10.
    L. G. Gvozdeva, V. L. Borsch, and S. A. Gavrenkov, in Proceedings of the 28th International Symposium on Shock Waves, Manchester, 2011.Google Scholar
  11. 11.
    L. G. Gvozdeva and S. A. Gavrenkov, Tech. Phys. Lett. 38, 372 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    L. G. Gvozdeva and S. A. Gavrenkov, Physics of Extreme States of Matter-2012 (Inst. Probl. Khim. Fiz., Chernogolovka, 2012), pp. 57–59.Google Scholar
  13. 13.
    S. A. Gavrenkov and L. G. Gvozdeva, Physics of Extreme States of Matter, 2012 (Inst. Probl. Khim. Fiz., Chernogolovka, 2012), pp. 59–61.Google Scholar
  14. 14.
    S. A. Gavrenkov and L. G. Gvozdeva, Tech. Phys. Lett. 38, 587 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    J. von Neumann, “Oblique reflection of shock waves,” Collected Works of J. Von Neumann (Pergamon, Oxford, 1963), Vol. 6, pp. 238–299.Google Scholar
  16. 16.
    T. V. Bazhenova and L. G. Gvozdeva, Unsteady Interactions of Shock Waves (Nauka, Moscow, 1977).Google Scholar
  17. 17.
    T. V. Bazhenova, L. G. Gvozdeva, and M. A. Nettleton, Prog. Aerosp. Sci. 21, 249 (1984).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations