Advertisement

Technical Physics

, Volume 58, Issue 7, pp 989–993 | Cite as

Dependence of the type of fracture on temperature and strain rate

  • A. D. Evstifeev
  • A. A. Gruzdkov
  • Yu. V. Petrov
Solid State

Abstract

A way to determine conditions for the viscous-brittle transition preceding the fracture of a solid is suggested. The viscous-brittle transition is viewed as the result of competition between different fracture mechanisms. The model suggested in this work is valid in wide ranges of strain rates and temperatures. The temperature and strain rate intervals within which brittle fracture is most probable are calculated for several materials.

Keywords

Brittle Fracture High Strain Rate Ultimate Stress Strain Rate Range Strain Rate Dependence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Davidenkov, Dynamic Testing of Materials (ONTI, Leningrad-Moscow, 1936).Google Scholar
  2. 2.
    N. N. Davidenkov, Zh. Tekh. Fiz. 9, 1051 (1939).Google Scholar
  3. 3.
    F. F. Vitman and V. A. Stepanov, Zh. Tekh. Fiz. 9, 1070 (1939).Google Scholar
  4. 4.
    A. F. Ioffe, Physics of Crystals (Gosizdat, Leningrad, 1929; University Microfilms, Ann Arbor, 1966).Google Scholar
  5. 5.
    A. P. Vashchenko and V. A. Makovei, Fiz.-Khim. Mekh. Mater. (L’vov) 28, 14 (1992).Google Scholar
  6. 6.
    G. V. Stepanov, Elastic-Plastic Deformation of Materials under Pulse Load (Naukova Dumka, Kiev, 1991).Google Scholar
  7. 7.
    G. I. Kanel’ and S. V. Razorenov, Phys. Solid State 43, 871 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    G. I. Kanel’, S. V. Razorenov, E. B. Zaretskii, L. Kherrman, and B. Maier, Phys. Solid State 45, 656 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Medias (Yanus-K, Moscow, 1996).Google Scholar
  10. 10.
    V. Bratov, N. Morozov, and Y. Petrov, Dynamic Strength of Continuum (St. Petersb. Univ., St. Petersburg, 2009).Google Scholar
  11. 11.
    A. A. Gruzdkov, Yu. V. Petrov, and V. I. Smirnov, Phys. Solid State 44, 2080 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    A. A. Gruzdkov, E. V. Sitnikova, Y. V. Petrov, and N. F. Morozov, Math. Mech. Solid 14, 72 (2009).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Yu. V. Petrov, A. A. Gruzdkov, and E. V. Sitnikova, Dokl. Phys. 52, 691 (2007).ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    Yu. V. Petrov and E. V. Sitnikova, Tech. Phys. 50, 1034 (2005).CrossRefGoogle Scholar
  15. 15.
    A. P. Vashchenko, V. P. Leonov, V. M. Tokarev, and A. S. Eglit, Probl. Prochn., No. 9, 17 (1991).Google Scholar
  16. 16.
    J. D. Campbell and W. G. Ferguson, Philos. Mag. 21, 63 (1970).ADSCrossRefGoogle Scholar
  17. 17.
    G. V. Stepanov, Probl. Prochn., No. 6, 37 (1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. D. Evstifeev
    • 1
  • A. A. Gruzdkov
    • 1
  • Yu. V. Petrov
    • 1
  1. 1.St. Petersburg State UniversityStaryi Peterhof, St. PetersburgRussia

Personalised recommendations