Technical Physics

, Volume 58, Issue 4, pp 612–614 | Cite as

Effective electromagnetocrystalline inhomogeneities

Short Communications

Abstract

Effective electromagnetocrystalline inhomogeneities, which, unlike conventional inhomogeneities, have a low-impedance are suggested. The field distribution in these inhomogeneities and their frequency dependences are analyzed. Experimental and calculated characteristics of a filter on their basis are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. H. Weng, Y. C. Guo, X. W. Shi, and X. Q. Chen, Prog. Electromagn. Res. B 7, 173 (2008).CrossRefGoogle Scholar
  2. 2.
    M. Kazerooni, M. Cheldavi, and A. Kamarei, Prog. Electromagn. Res. M 10, 93 (2009).CrossRefGoogle Scholar
  3. 3.
    A. Tirado-Mendez, H. Jardon-Aguilar, and R. Flores-Leal, Prog. Electromagn. Res. C 13, 77 (2010).CrossRefGoogle Scholar
  4. 4.
    Hong Jia-Sheng and M. J. Lancaster, Microstrip Filters for RF/Microwave Applications (Wiley, New York, 2001).Google Scholar
  5. 5.
    M. Makimoto and S. Yamashita, Microwave Resonators and Filters for Wireless Communication: Theory, Design and Application (Springer, Berlin, 2001).Google Scholar
  6. 6.
    C.-P. Chang, C.-C. Su, S.-H. Hung, et al., Prog. Electromagn. Res. Lett. 8, 151 (2009).CrossRefGoogle Scholar
  7. 7.
    A. I. Nazarko, E. A. Nelin, V. I. Popsui, and Yu. F. Timofeeva, Tech. Phys. 55, 569 (2010).CrossRefGoogle Scholar
  8. 8.
    A. I. Nazarko, E. A. Nelin, V. I. Popsui, and Yu. F. Timofeeva, Tech. Phys. 56, 728 (2011).CrossRefGoogle Scholar
  9. 9.
    A. I. Nazarko, E. A. Nelin, V. I. Popsui, and Yu. F. Timofeeva, Tech. Phys. Lett. 37, 185 (2011).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Kyiv Polytechnic InstituteNational Technical University of UkraineKyivUkraine

Personalised recommendations