Technical Physics

, Volume 57, Issue 7, pp 1003–1007 | Cite as

Effect of vacuum level on field emission from nanographite films

  • E. A. Vasil’eva
  • V. I. Kleshch
  • A. N. Obraztsov
Surface, Electron and Ion Emission

Abstract

The effect of vacuum level on field emission from nanographite films obtained by plasma-chemical deposition is studied. The stable emission of electrons from the nanographite is observed at a threshold field of 1–2 V/μm, a current density of 0.1 mA/cm2, and a residual gas pressure in the measuring chamber of less than 10−5 Torr. At a higher pressure, the emission properties of the films gradually degrade with time. Repeat evacuation of the chamber to 10−5 Torr restores the emission properties. Such behavior of the nanographite emitters is explained by adsorption/desorption processes (reversible degradation of the emission) and the destruction of the film under the action of residual gas ion bombardment (irreversible changes).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Eletskii, Phys. Usp. 53, 863 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    V. I. Kleshch, A. N. Obraztsov, and E. D. Obraztsova, JETP Lett. 90, 464 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    K. Jensen, R. Kim, and A. Zettl, Nature Nanotech. 3, 533 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    K. Jensen, J. Weldon, H. Garcia, and A. Zettl, Nano Lett. 7, 3508 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    P. Janhunen, P. K. Toivanen, J. Polkko, et al., Rev. Sci. Instrum. 81, 111301 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    Ch. Li, Y. Zhang, M. Mann, D. Hasko, W. Lei, B. Wang, D. Chu, D. Pribalt, G. A. G. Amaratunga, and W. I. Milne, Appl. Phys. Lett. 97, 113107 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, J. Appl. Phys. 47, 5248 (1976).ADSCrossRefGoogle Scholar
  8. 8.
    A. N. Obraztsov and V. I. Kleshch, J. Nanoelectron. Optoelectron. 4, 207 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Wadhawan, R. E. Stallcup II, K. F. Stephens II, J. M. Pereza, and I. A. Akwani, Appl. Phys. Lett. 79, 1867 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    J.-M. Bonard, J.-P. Salvetat, T. Stockli, W. A. Heer, L. Forro, and A. Chatelain, Appl. Phys. Lett. 73, 918 (1998).ADSCrossRefGoogle Scholar
  11. 11.
    K. A. Dean and B. R. Chalamala, Appl. Phys. Lett. 75, 3017 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    S. T. Purcell, P. Vincent, C. Journet, and V. T. Binh, Phys. Rev. Lett. 88, 105502 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    J.-M. Bonard, Ch. Klinke, K. A. Dean, and B. F. Coll, Phys. Rev. B 67, 115406 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    V. I. Kleshch, T. Susi, A. G. Nasibulin, E. D. Obraztsova, A. N. Obraztsov, and F. I. Kauppinen, Phys. Status Solidi B 247, 3051 (2010).CrossRefGoogle Scholar
  15. 15.
    E. P. Sheshin, Surface Structure and Field Emission Properties of Carbon Materials (MFTI, Moscow, 2001), p. 288 [in Russian].Google Scholar
  16. 16.
    M. I. Elinson and G. F. Vasil’ev, Field Emission (Fizmatgiz, Moscow, 1958), p. 272 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. A. Vasil’eva
    • 1
  • V. I. Kleshch
    • 1
  • A. N. Obraztsov
    • 1
  1. 1.Physics DepartmentMoscow State UniversityMoscowRussia

Personalised recommendations