Advertisement

Technical Physics

, Volume 57, Issue 2, pp 157–166 | Cite as

Orientational transitions in a ferronematic layer with bistable anchoring at the boundary

  • A. N. Zakhlevnykh
  • O. R. Semenova
Theoretical and Mathematical Physics

Abstract

A possibility of the first-order transition, as well as reentrant transitions, induced by an external magnetic field between the homeotropic phase and the hybrid homeotropically planar phase in a ferronematic liquid crystal (ferronematic) with bistable anchoring at the layer boundary is demonstrated in the framework of a continuum theory. The critical values of the material parameters of the ferronematic, the anchoring energy, the thickness of the layer, and the magnetic field strength, for which this transition is possible, are determined. The cases of positive and negative diamagnetic anisotropy of the ferronematic are considered.

Keywords

Magnetic Particle Planar Phase Total Free Energy Liquid Crystal Cell Orientational Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Barberi, M. Giocondo, J. Li, R. Bartolino, I. Dozov, and G. Durand, Appl. Phys. Lett. 71, 3495 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    R. Barberi, J. J. Bonvent, M. Giocondo, M. Iovane, and A. L. Alexe-Ionescu, J. Appl. Phys. 84, 1321 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    T. Qian, Z. Xie, H. S. Kwok, and P. Sheng, J. Appl. Phys. 90, 3121 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    M. Yoneya, J. H. Kim, and H. Yokoyama, Appl. Phys. Lett. 80, 374 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    L. A. Parry-Jones, E. G. Edwards, S. J. Elston, and C. V. Brown, Appl. Phys. Lett. 82, 1476 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    J.-S. Hsu, B.-J. Liang, and S.-H. Chen, Jpn. J. Appl. Phys. 44, 6170 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    A. J. Davidson and N. J. Mottram, Phys. Rev. E 65, 051710 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    C. V. Brown, L. Parry-Jones, S. I. Elston, and S. J. Wilkins, Mol. Cryst. Liq. Cryst. 410, 417 (2004).CrossRefGoogle Scholar
  9. 9.
    S. V. Burylov and Yu. L. Raikher, Mol. Cryst. Liq. Cryst. 258, 107 (1995).CrossRefGoogle Scholar
  10. 10.
    F. Brochard and P. G. de Gennes, J. Phys. (France) 31, 691 (1970).CrossRefGoogle Scholar
  11. 11.
    A. N. Zakhlevnykh and V. S. Shavkunov, J. Magn. Magn. Mater. 210, 279 (2000).ADSCrossRefGoogle Scholar
  12. 12.
    A. N. Zakhlevnykh and P. A. Sosnin, J. Magn. Magn. Mater. 146, 103 (1995).ADSCrossRefGoogle Scholar
  13. 13.
    A. Zakhlevnykh and V. Shavkunov, Mol. Cryst. Liq. Cryst. 330, 593 (1999).CrossRefGoogle Scholar
  14. 14.
    V. I. Zadorozhnii, T. J. Sluckin, V. Yu. Reshetnyak, and K. S. Thomas, SIAM J. Appl. Math. 68, 1688 (2008).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    S. H. Chen and N. M. Amer, Phys. Rev. Lett. 51, 2298 (1983).ADSCrossRefGoogle Scholar
  16. 16.
    L. M. Blinov and V. G. Chigrinov, Electrooptic Effect in Liquid Crystal Materials (Springer, New York, 1994).CrossRefGoogle Scholar
  17. 17.
    A. N. Zakhlevnykh, J. Magn. Magn. Mater. 269, 238 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Perm State UniversityPermRussia

Personalised recommendations