Technical Physics

, Volume 57, Issue 2, pp 181–187

Circular ion diode with self-magnetic insulation

Gas Discharges, Plasma

Abstract

The results of a study of the generation of a gigawatt-level pulsed ion beam formed by a diode with an explosive-emission potential electrode in self-magnetic insulation mode are presented. The experiments have been performed on the TEMP-4M ion accelerator operating in double-pulse formation mode: the first pulse is negative polarity (300–500 ns, 100–150 kV) and the second is positive (150 ns, 250–300 kV). The ion current density is 20–40 A/cm2; the beam consists of protons and carbon ions. To increase the efficiency of the ion current generation, a circular geometry diode is proposed. It is shown that with the new design, the plasma is effectively formed over the entire working surface of the graphite potential electrode. During ion beam generation, magnetic insulation of the electrons is achieved over the entire length of the diode (B/Bcr ≥ 3). Because of the high drift velocity, the transit time of electrons in the anode-cathode gap is 3–5 ns, whilst the transit time of C+ carbon ions exceeds 8 ns. This indicates low efficiency self-magnetic insulation for this geometry of diode. At the same time, it has been observed experimentally that during ion current generation (the second pulse), the electron component of the total current is suppressed by a factor of 4–5. A new mechanism of limiting the electron emission, which explains the decrease in the electron component of the total current in the circular diode with self-magnetic insulation, is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Langmuir, Phys. Rev. 2, 450 (1929).ADSCrossRefGoogle Scholar
  2. 2.
    R. N. Sudan and R. V. Lovelace Phys. Rev. Lett. 31, 1174 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    P. Dreike, C. Eichenberger, S. Humphries, and R. Sudan, J. Appl. Phys. 47, 85 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    E. G. Furman, A. V. Stepanov, and N. Zh. Furman, Zh. Tekh. Fiz. 77(5), 86 (2007) [Tech. Phys. 52, 621 (2007)].Google Scholar
  5. 5.
    S. Humphries, Plasma Phys. 19, 399 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    V. M. Bystritskii and A. N. Didenko High-Power Ion Beams (Energoatomizdat, Moscow, 1984; Springer, 1989).Google Scholar
  7. 7.
    X. P. Zhu, M. K. Lei, and T. C. Ma, Rev. Sci. Instrum. 73, 1728 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    A. I. Pushkarev, J. I. Isakova, M. S. Saltimakov, and R. V. Sazonov, Nat. Sci. 2, 419 (2010).Google Scholar
  9. 9.
    A. I. Pushkarev, V. I. Isakova, and D. V. Vahrushev, Phys. Plasmas 17, 123112 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    A. I. Pushkarev, Zh. Tekh. Fiz. 78(3), 78 (2008) [Tech. Phys. 53, 357 (2008)].Google Scholar
  11. 11.
    A. I. Pushkarev and R. V. Sazonov, IEEE Trans. Plasma Sci 37, 1901 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    A. I. Pushkarev, J. I. Isakova, M. S. Saltimakov, and R. V. Sazonov, Phys. Plasmas 17, 013104 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    G. E. Remnev, I. F. Isakov, A. I. Pushkarev, et al., Surf. Coat. Technol. 114, 206 (1999).CrossRefGoogle Scholar
  14. 14.
    A. I. Pushkarev, V. A. Tarbokov, and R. V. Sazonov, “Pulse Ion Accelerator,” RF Patent No. 86374 (August 27, 2009), Byull. Isobret., No. 24 (2009).Google Scholar
  15. 15.
    Yu. I. Isakova, A. I. Pushkarev, and V. A. Tarbokov, Izv. Tomsk. Politekh. Inst. 316, 76 (2010).Google Scholar
  16. 16.
    P. L. Kalantarov and L. A. Tseitlin, Calculation of Inductances: A Handbook (Energoatomizdat, Leningrad, 1986) [in Russian].Google Scholar
  17. 17.
    H. A. Davis, R. R. Bartsch, J. C. Olson, D. J. Rej, and W. J. Waganaar, J. Appl. Phys. 2, 3223 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations