Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Carbon nanotube based resonant detector of modulated terahertz radiation

  • 79 Accesses

  • 1 Citations


A system of two freely suspended single-walled carbon nanotubes in the form of a segment of a transmission line is considered. Its electrodynamic description is based on the Tomonaga-Luttinger liquid model. The system under investigation is a plasmon resonator with a resonance frequency from the terahertz range, which serves as a high-Q mechanical oscillator coupled with the plasmon resonator by a nonlinear ponderomotive force. As a possible application of this system, a new model of resonant detector is proposed. The output parameters of such a nanosized detector are obtained.

This is a preview of subscription content, log in to check access.


  1. 1.

    H. C. Nathanson, W. E. Newell, R. A. Wickstrom, and J. R. Davis, IEEE Trans. Electron Devices 14, 117 (1967).

  2. 2.

    R. G. Beck, M. A. Eriksson, R. A. Westervelt, K. L. Campman, and A. C. Gossard, Appl. Phys. Lett. 68, 3763 (1996).

  3. 3.

    M. P. Schwarz, D. Grundler, I. Meinel, Ch. Heyn, and D. Heitmann, Appl. Phys. Lett. 76, 3564 (2000).

  4. 4.

    M. I. Dyakonov and M. S. Shur, Phys. Rev. Lett. 71, 2465 (1993).

  5. 5.

    M. I. Dyakonov and M. S. Shur, IEEE Trans. Electron Devices 43, 1640 (1996).

  6. 6.

    A. el Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, Appl. Phys. Lett. 89, 131926 (2006).

  7. 7.

    A. V. Antonov, V. I. Gavrilenko, K. V. Maremyanin, S. V. Morozov, F. Teppe, and W. Knap, Fiz. Tekh. Poluprovodn. (St. Petersburg) 43, 552 (2009) [Semiconductors 43, 528 (2009)].

  8. 8.

    V. V. Popov, G. M. Tsymbalov, D. V. Fateev, and M. S. Shur, Int. J. High Speed Electron. Syst. 17, 557 (2007).

  9. 9.

    V. Ryzhii, M. Ryzhii, Y. Hu, I. Hagiwara, and M. S. Shur, Appl. Phys. Lett. 90, 203503 (2007).

  10. 10.

    Y. Hu, M. Ryzhii, I. Hagiwara, M. S. Shur, and V. Ryzhii, Phys. Status Solidi C 5, 277 (2008).

  11. 11.

    V. G. Leiman, M. Ryzhii, A. Satou, N. Ryabova, V. Ryzhii, T. Otsuji, and M. S. Shur, J. Appl. Phys. 104, 024514 (2008).

  12. 12.

    A. V. Arsenin, A. D. Gladun, V. G. Leiman, V. L. Semenenko, and V. I. Ryzhii, Radiotekh. Elektron. (Moscow) 54, 1394 (2009).

  13. 13.

    A. V. Arsenin, A. D. Gladun, V. G. Leiman, V. L. Semenenko, and V. I. Ryzhii, Radiotekh. Elektron. (Moscow) 55, 1376 (2010).

  14. 14.

    M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes (Springer, Berlin, 2001).

  15. 15.

    G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, Phys. Rev. B 60, 17136 (1999).

  16. 16.

    P. J. Burke, S. Li, and Z. Yu, IEEE. Trans. Nanotech. 5, 314 (2006).

  17. 17.

    A. Maffucci, G. Miano, and F. Villone, Int. J. Circ. Theor. Appl. 36, 17136 (2008).

  18. 18.

    A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).

  19. 19.

    V. F. Gantmakher, Fiz. Nizk. Temp. 31, 436 (2005) [Low Temp. Phys. 31, 331 (2005)].

  20. 20.

    T. Giamarchi, Quantum Physica in One Dimension (Oxford Univ., Oxford, 2003).

  21. 21.

    M. W. Bockrath, Carbon Nanotubes: “Electrons in One Dimension,” PhD Thesis (Berkeley, 1990).

  22. 22.

    M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. F. Smalley, L. Balents, and P. L. McEuen, Nature 397, 598 (1990).

  23. 23.

    H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T. Miyahara, S. Suzuki, Y. Achiba, M. Nakatake, T. Narimura, M. Higaahiguchi, K. Shimada, H. Namatame, and M. Taniguchi, Nature 426, 540 (2003).

  24. 24.

    P. J. Burke, IEEE Trans. Nanotech. 1, 129 (2002).

  25. 25.

    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Fizmatlit, Moscow, 1987; Pergamon, New York, 1986).

  26. 26.

    V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).

Download references

Author information

Correspondence to V. G. Leiman.

Additional information

Original Russian Text © Yu.V. Stebunov, V.G. Leiman, A.V. Arsenin, A.D. Gladun, V.I. Ryzhii, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 1, pp. 67–72.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stebunov, Y.V., Leiman, V.G., Arsenin, A.V. et al. Carbon nanotube based resonant detector of modulated terahertz radiation. Tech. Phys. 57, 63–68 (2012). https://doi.org/10.1134/S1063784212010239

Download citation


  • Field Effect Transistor
  • Mechanical Oscillator
  • LUTTINGER Liquid
  • Arsenin
  • Terahertz Range