Technical Physics

, Volume 57, Issue 1, pp 63–68 | Cite as

Carbon nanotube based resonant detector of modulated terahertz radiation

  • Yu. V. Stebunov
  • V. G. Leiman
  • A. V. Arsenin
  • A. D. Gladun
  • V. I. Ryzhii
Solid State Electronics


A system of two freely suspended single-walled carbon nanotubes in the form of a segment of a transmission line is considered. Its electrodynamic description is based on the Tomonaga-Luttinger liquid model. The system under investigation is a plasmon resonator with a resonance frequency from the terahertz range, which serves as a high-Q mechanical oscillator coupled with the plasmon resonator by a nonlinear ponderomotive force. As a possible application of this system, a new model of resonant detector is proposed. The output parameters of such a nanosized detector are obtained.


  1. 1.
    H. C. Nathanson, W. E. Newell, R. A. Wickstrom, and J. R. Davis, IEEE Trans. Electron Devices 14, 117 (1967).CrossRefGoogle Scholar
  2. 2.
    R. G. Beck, M. A. Eriksson, R. A. Westervelt, K. L. Campman, and A. C. Gossard, Appl. Phys. Lett. 68, 3763 (1996).CrossRefADSGoogle Scholar
  3. 3.
    M. P. Schwarz, D. Grundler, I. Meinel, Ch. Heyn, and D. Heitmann, Appl. Phys. Lett. 76, 3564 (2000).CrossRefADSGoogle Scholar
  4. 4.
    M. I. Dyakonov and M. S. Shur, Phys. Rev. Lett. 71, 2465 (1993).CrossRefADSGoogle Scholar
  5. 5.
    M. I. Dyakonov and M. S. Shur, IEEE Trans. Electron Devices 43, 1640 (1996).CrossRefADSGoogle Scholar
  6. 6.
    A. el Fatimy, F. Teppe, N. Dyakonova, W. Knap, D. Seliuta, G. Valusis, A. Shchepetov, Y. Roelens, S. Bollaert, A. Cappy, and S. Rumyantsev, Appl. Phys. Lett. 89, 131926 (2006).CrossRefADSGoogle Scholar
  7. 7.
    A. V. Antonov, V. I. Gavrilenko, K. V. Maremyanin, S. V. Morozov, F. Teppe, and W. Knap, Fiz. Tekh. Poluprovodn. (St. Petersburg) 43, 552 (2009) [Semiconductors 43, 528 (2009)].Google Scholar
  8. 8.
    V. V. Popov, G. M. Tsymbalov, D. V. Fateev, and M. S. Shur, Int. J. High Speed Electron. Syst. 17, 557 (2007).CrossRefGoogle Scholar
  9. 9.
    V. Ryzhii, M. Ryzhii, Y. Hu, I. Hagiwara, and M. S. Shur, Appl. Phys. Lett. 90, 203503 (2007).CrossRefADSGoogle Scholar
  10. 10.
    Y. Hu, M. Ryzhii, I. Hagiwara, M. S. Shur, and V. Ryzhii, Phys. Status Solidi C 5, 277 (2008).CrossRefADSGoogle Scholar
  11. 11.
    V. G. Leiman, M. Ryzhii, A. Satou, N. Ryabova, V. Ryzhii, T. Otsuji, and M. S. Shur, J. Appl. Phys. 104, 024514 (2008).CrossRefADSGoogle Scholar
  12. 12.
    A. V. Arsenin, A. D. Gladun, V. G. Leiman, V. L. Semenenko, and V. I. Ryzhii, Radiotekh. Elektron. (Moscow) 54, 1394 (2009).Google Scholar
  13. 13.
    A. V. Arsenin, A. D. Gladun, V. G. Leiman, V. L. Semenenko, and V. I. Ryzhii, Radiotekh. Elektron. (Moscow) 55, 1376 (2010).Google Scholar
  14. 14.
    M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes (Springer, Berlin, 2001).CrossRefGoogle Scholar
  15. 15.
    G. Ya. Slepyan, S. A. Maksimenko, A. Lakhtakia, O. Yevtushenko, and A. V. Gusakov, Phys. Rev. B 60, 17136 (1999).CrossRefADSGoogle Scholar
  16. 16.
    P. J. Burke, S. Li, and Z. Yu, IEEE. Trans. Nanotech. 5, 314 (2006).CrossRefADSGoogle Scholar
  17. 17.
    A. Maffucci, G. Miano, and F. Villone, Int. J. Circ. Theor. Appl. 36, 17136 (2008).CrossRefGoogle Scholar
  18. 18.
    A. Abrikosov, Fundamentals of the Theory of Metals (Nauka, Moscow, 1987; North-Holland, Amsterdam, 1988).Google Scholar
  19. 19.
    V. F. Gantmakher, Fiz. Nizk. Temp. 31, 436 (2005) [Low Temp. Phys. 31, 331 (2005)].Google Scholar
  20. 20.
    T. Giamarchi, Quantum Physica in One Dimension (Oxford Univ., Oxford, 2003).CrossRefGoogle Scholar
  21. 21.
    M. W. Bockrath, Carbon Nanotubes: “Electrons in One Dimension,” PhD Thesis (Berkeley, 1990).Google Scholar
  22. 22.
    M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. F. Smalley, L. Balents, and P. L. McEuen, Nature 397, 598 (1990).ADSGoogle Scholar
  23. 23.
    H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T. Miyahara, S. Suzuki, Y. Achiba, M. Nakatake, T. Narimura, M. Higaahiguchi, K. Shimada, H. Namatame, and M. Taniguchi, Nature 426, 540 (2003).CrossRefADSGoogle Scholar
  24. 24.
    P. J. Burke, IEEE Trans. Nanotech. 1, 129 (2002).CrossRefADSGoogle Scholar
  25. 25.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Fizmatlit, Moscow, 1987; Pergamon, New York, 1986).Google Scholar
  26. 26.
    V. Sazonova, Y. Yaish, H. Ustunel, D. Roundy, T. A. Arias, and P. L. McEuen, Nature 431, 284 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Yu. V. Stebunov
    • 1
  • V. G. Leiman
    • 1
  • A. V. Arsenin
    • 1
  • A. D. Gladun
    • 1
  • V. I. Ryzhii
    • 2
  1. 1.Moscow Institute of Physics and Technology (State University)Dolgoprudnyi, Moscow oblastRussia
  2. 2.University of AizuAizu-WakamatsuJapan

Personalised recommendations