Technical Physics

, Volume 56, Issue 11, pp 1588–1592 | Cite as

Methane conversion in a multielectrode slipping surface discharge in the two-phase water-gas medium

  • A. M. Anpilov
  • E. M. Barkhudarov
  • N. K. Berezhetskaya
  • S. I. Gritsinin
  • A. M. Davydov
  • Yu. N. Kozlov
  • I. A. Kossyi
  • M. A. Misakyan
  • S. M. Temchin
  • V. G. Ralchenko
  • P. A. Gushchin
  • E. V. Ivanov
Gas Discharges, Plasma

Abstract

The multielectrode slipping surface discharge in a two-phase water-gas (methane) medium is studied experimentally as a plasma-chemical converter of methane into various hydrocarbons, carbon, and hydrogen. The energy value of methane decomposition is on the order of 5 eV/molecule, which is close to record-high values attained in high-pressure discharges. The degree of conversion of methane is determined and the possibility of its substantial increase is considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Barkhudarov, I. A. Kossyi, M. I. Taktakishvili, N. Christofi, and Yu. V. Zadiraka, in Proccedings of the 13th International Conference on Gas Discharges and Their Applications, Glasgow, 2000 (Strathclyde University, Glasgow, 2000), Vol. 2, pp. 680–683.Google Scholar
  2. 2.
    D. Mariotti and R. M. Sankaran, J. Phys. D: Appl. Phys. 43, 323001 (2010).CrossRefGoogle Scholar
  3. 3.
    A. M. Anpilov, E. M. Barkhudarov, Yu. N. Kozlov, Vol. A. Kop’ev, I. A. Kossyi, M. A. Taktakishvili, and S. M. Temchin, in Proceedings of the 4th International Conference on Plasma Physics and Plasma Technology, Minsk, 2003, Vol. 2, p. 949.Google Scholar
  4. 4.
    V. L. Goryachev, F. G. Rutberg, and V. N. Fedyukovich, Izv. Akad. Nauk, Energ. 36, 35 (1988).Google Scholar
  5. 5.
    A. M. Anpilov, E. M. Barhudarov, Yu. B. Bark, et al., J. Phys. D: Appl. Phys. 34, 993 (2001).CrossRefADSGoogle Scholar
  6. 6.
    A. M. Anpilov, E. M. Barkhudarov, N. Christofi, et al., Lett. Appl. Microbiol. 35, 90 (2002).CrossRefGoogle Scholar
  7. 7.
    A. M. Anpilov, E. M. Barkhudarov, et al., in Proceedings of the 36th Zvenigorod Conference on Plasma Physics and Controlled Fusion, Zvenigorod, 2003, p. 331.Google Scholar
  8. 8.
    A. I. Babaritskii, S. A. Demkin, V. K. Zhivotov, et al., Plasmachemistry-91 (INKhS AN SSSR, 1991), Vol. 2, pp. 286–303.Google Scholar
  9. 9.
    S. I. Gritsinin, P. A. Gushchin, A. M. Davidov, E. V. Ivanov, I. A. Kossyi, and M. A. Misakyan, Fiz. Plazmy 35, 1011 (2009) [Plasma Phys. Rep. 35, 933 (2009)].Google Scholar
  10. 10.
    N. Parkansky, O. Goldstein, B. Alterkop, R. L. Boxman, Yu. Resenberg, and G. Frenkel, Powder Technol. 161, 215 (2006).CrossRefGoogle Scholar
  11. 11.
    Noriaki Sano, J. Phys. D: Appl. Phys. 37, L17 (2004).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. M. Anpilov
    • 1
  • E. M. Barkhudarov
    • 1
  • N. K. Berezhetskaya
    • 1
  • S. I. Gritsinin
    • 1
  • A. M. Davydov
    • 1
  • Yu. N. Kozlov
    • 2
  • I. A. Kossyi
    • 1
  • M. A. Misakyan
    • 1
  • S. M. Temchin
    • 1
  • V. G. Ralchenko
    • 1
  • P. A. Gushchin
    • 3
  • E. V. Ivanov
    • 3
  1. 1.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Gubkin Russian State University of Oil and GasMoscowRussia

Personalised recommendations