Technical Physics

, 56:1259 | Cite as

Snake instability in the plasma of the Globus-M spherical tokamak

  • M. I. Patrov
  • Yu. V. Petrov
  • V. K. Gusev
  • G. S. Kurskiev
  • A. N. Novokhatskii
  • S. A. Sakharov
  • S. Yu. Tolstyakov
Gas Discharges, Plasma

Abstract

Experiments with the limiting density of a plasma generated in the Globus-M spherical tokamak operating in the ohmic heating regime show that, when the plasma density reaches a certain value at the center of the plasma filament, snake-type strong magnetohydrodynamic instability exciting the m/n = 1/1 mode arises. A further rise in the density causes an internal disruption of the plasma. Numerical simulation of the instability dynamics is performed, and the results of simulation are compared with experimental and theoretical data. Experimental and theoretical data are in good agreement. It is shown that the instability is associated with an increased amount of impurities in the plasma and that the limit in density is of a “technological,” rather than of a fundamental, character. With the vacuum chamber cleaned more thoroughly, this limit disappears and the snake instability is not observed. Accordingly, a plasma filament density of 1 × 1020m−3 was attained with a Greenwald number as high as 95%.

References

  1. 1.
    A. Weller, et al., Phys. Rev. Lett. 59, 2303 (1987).ADSCrossRefGoogle Scholar
  2. 2.
    R. D. Gill, et al., Nucl. Fusion 32, 723 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    Hu Liqun, et al., Plasma Phys. Controlled Fusion 45, 349 (2003).ADSCrossRefGoogle Scholar
  4. 4.
    R. J. Buttery, R. Akers, E. Arends, et al., Nucl. Fussion 44, 1027 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    S. M. Kaye, M. G. Bell, R. E. Bell, et al., Technical Report No. PPPL-3454 (Princeton, 2000).Google Scholar
  6. 6.
    J. A. Wesson, Plasma Phys. Controlled Fusion 37, A337 (1995).ADSCrossRefGoogle Scholar
  7. 7.
    G. Turri, et al., in Proceedings of the 31st EPS Conference on Controlled Fusion and Plasma Physics, London, 2004, Europhysics Conference Abstracts, Vol. 28A, p. 4.192.Google Scholar
  8. 8.
    I. Lehane, et al., in Proceedings of the 30th EPS Conference on Controlled Fusion and Plasma Physics, St. Petersburg, 2003, Europhysics Conference Abstracts, Vol. 27A, p. 3.092.Google Scholar
  9. 9.
    V. K. Gusev, et al., Nucl. Fusion 49, 104021 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    V. K. Gusev, S. Yu. Tolstyakov, V. I. Varfolomeev, et al., Vopr. At. Nauki Tekh., Ser: Termoyad. Sintez, No. 1, 39 (2007).Google Scholar
  11. 11.
    M. I. Patrov, S. E. Bender, V. K. Gusev, et al., Fiz. Plazmy 33, 81 (2007) [Plasma Phys. Rep. 33, 81 (2007)].Google Scholar
  12. 12.
    V. K. Gusev, S. E. Bender, A. V. Dech, et al., Zh. Tekh. Fiz. 76(8), 25 (2006) [Tech. Phys. 51, 987 (2006)].Google Scholar
  13. 13.
    N. V. Sakharov, et al., in Proceedings of the 29th EPS Conference on Controlled Fusion and Plasma Physics, Montreux, Switzerland, 2002, p. 5.078.Google Scholar
  14. 14.
    V. K. Gusev, F. V. Chernyshev, V. E. Golant, et al., Nucl. Fusion 46, 584 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    I. Yu. Senichenkov, V. A. Rozhansky, A. V. Bogomolov, et al., in Proceedings of the 35th EPS Conference on Plasma Physics, Hersonissos, Crete, Grecce, 2008, p. 2.046.Google Scholar
  16. 16.
    Yu. V. Pertov, S. E. Bender, V. K. Gusev, et al., “Plasma MHD Stability at Limiting Density on Globus”, in Proceedings of the 33rd EPS Conference on Plasma Physics, Roma, 2006, p. 4–103.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. I. Patrov
    • 1
  • Yu. V. Petrov
    • 1
  • V. K. Gusev
    • 1
  • G. S. Kurskiev
    • 1
  • A. N. Novokhatskii
    • 1
  • S. A. Sakharov
    • 1
  • S. Yu. Tolstyakov
    • 1
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations