Advertisement

Technical Physics

, Volume 56, Issue 6, pp 797–802 | Cite as

Impact failure of metallic rings by a magnetic pulse technique

  • V. A. Morozov
  • Yu. V. Petrov
  • A. A. Lukin
  • V. M. Kats
  • A. G. Udovik
  • S. A. Atroshenko
  • D. A. Gribanov
  • G. D. Fedorovsky
Solid State

Abstract

Metallic rings made of D16 aluminum alloy are studied upon the application of a distributed radial load by a magnetic pulse technique. Two approaches making it possible to decrease the period of the sin-wave load by seven and fifty times are developed. In addition, they allow one to determine the instant of rupture of the ring from a flash arising at rupture with the help of a photodetector. Simultaneously, the load pulse and a signal from the photodetector are displayed with a digital oscilloscope. It is shown that, when the load pulse shortens, the ductile component of fracture declines and the samples fail in a more brittle manner.

Keywords

Pulse Width Stack Fault Energy Load Pulse High Stack Fault Energy Shear Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. H. Zhang and K. Ravi-Chandar, Int. J. Fract. 142, 183 (2006).CrossRefGoogle Scholar
  2. 2.
    O. H. Zhang and K. Ravi-Chandar, Int. J. Fract. 150, 3 (2008).zbMATHCrossRefGoogle Scholar
  3. 3.
    O. H. Zhang, K. M. Liechti, and K. Ravi-Chandar, Int. J. Fract. 155, 101 (2009).CrossRefGoogle Scholar
  4. 4.
    O. H. Zhang and K. Ravi-Chandar, Int. J. Fract. 163, 41 (2010).zbMATHCrossRefGoogle Scholar
  5. 5.
    A. E. Carden, P. E. Williams, and R. R. Karpp, Shock Waves and High-Strain-Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum, New York-London, 1984), Vol. 1, p. 51.Google Scholar
  6. 6.
    L. E. Murr, Shock Waves and High-Strain-Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum, New York-London, 1984), Vol. 3, p. 260.Google Scholar
  7. 7.
    R. N. Wright, D. E. Mikkola, and S. LaRouche, Shock Waves and High-Strain-Rate Phenomena in Metals, Ed. by M. A. Meyers and L. E. Murr (Plenum, New York-London, 1984), Vol. 3, p. 353.Google Scholar
  8. 8.
    G. V. Stepanov, Elastic-Plastic Deformation and Fracture of Materials under Impulse Loading (Naukova Dumka, Kiev, 1991) [in Russian].Google Scholar
  9. 9.
    S. I. Krivosheev and Yu. V. Petrov, Preprint No. 142, IPMash RAN (Institute of Problem of Engineering Scince of Russian Academy of Sciences, St. Petersburg, 1997).Google Scholar
  10. 10.
    S. A. Atroshenko, S. I. Krivosheev, and A. Yu. Petrov, Zh. Tekh. Fiz. 72(2), 52 (2002) [Tech. Phys. 47, 194 (2002)].Google Scholar
  11. 11.
    S. A. Atroshenko, S. I. Krivosheev, A. Yu. Petrov, A. A. Utkin, and G. D. Fedorovskii, Zh. Tekh. Fiz. 72(12), 54 (2002) [Tech. Phys. 47, 1538 (2002)].Google Scholar
  12. 12.
    J. R. Klepaczko, Y. V. Petrov, S. A. Atroshenko, P. Chevrier, G. D. Fedorovsky, S. I. Krivosheev, and A. A. Utkin, Eng. Fract. Mech. 75, 136 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. A. Morozov
    • 1
  • Yu. V. Petrov
    • 1
  • A. A. Lukin
    • 1
  • V. M. Kats
    • 1
  • A. G. Udovik
    • 1
  • S. A. Atroshenko
    • 1
  • D. A. Gribanov
    • 1
  • G. D. Fedorovsky
    • 1
  1. 1.St. Petersburg State UniversityStaryi Peterhof, St. PetersburgRussia

Personalised recommendations