Technical Physics

, Volume 56, Issue 6, pp 869–876 | Cite as

Tribological system in the boundary friction mode under a periodic external action

Surface, Electron and Ion Emission

Abstract

A mechanical analog of a tribological system in the boundary friction mode is studied. A thermodynamic model is used to analyze the first-order phase transition between liquidlike and solidlike structures of a lubricant. The time dependences of the friction force, the relative velocity of the interacting surfaces, and the elastic component of the shear stresses appearing in the lubricant are obtained. It is shown that, in the liquidlike state, the shear modulus of the lubricant and the elastic stresses become zero. The intermittent (stick-slip) friction mode detected experimentally is described. It is shown that, as the lubricant temperature increases, the frequency of phase transitions between the lubricant structural states decreases and the total friction force and elastic stress amplitudes lower. When the temperature or the elastic strain exceeds the corresponding critical value, the lubricant melts and a kinetic slip mode in which the elastic component of the friction force is zero takes place.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. N. J. Persson, Sliding Friction: Physical Principles and Applications (Springer, New York, 2000).MATHGoogle Scholar
  2. 2.
    J. Israelachvili, Surf. Sci. Rep. 14, 109 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    J. Ringlein and M. O. Robbins, Am. J. Phys. 72, 884 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    H. Yoshizawa and J. Israelachvili, J. Phys. Chem. 97, 11300 (1993).CrossRefGoogle Scholar
  5. 5.
    V. L. Popov, Zh. Tekh. Fiz. 71(5), 100 (2001) [Tech. Phys. 46, 605 (2001)].Google Scholar
  6. 6.
    E. A. Brener and V. I. Marchenko, Pis’ma Zh. Eksp. Teor. Fiz. 76, 246 (2002) [JETP Lett. 76, 211 (2002)].Google Scholar
  7. 7.
    A. E. Filippov, J. Klafter, and M. Urbakh, Phys. Rev. Lett. 92, 135503 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    O. M. Braun and A. G. Naumovets, Surf. Sci. Rep. 60, 79 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    P. A. Thompsom and M. O. Robbins, Science 250, 792 (1990).ADSCrossRefGoogle Scholar
  10. 10.
    A. V. Khomenko and O. V. Yushchenko, Phys. Rev. E 68, 036110 (2003).ADSCrossRefGoogle Scholar
  11. 11.
    A. V. Khomenko and I. A. Lyashenko, Condens. Matter. Phys. 9, 695 (2006).Google Scholar
  12. 12.
    J. M. Carlson and A. A. Batista, Phys. Rev. E 53, 4153 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    I. A. Lyashenko, A. V. Khomenko, and L. S. Metlov, Zh. Tekh. Fiz. 80(8), 120 (2010) [Tech. Phys. 55, 1193 (2010)].Google Scholar
  14. 14.
    A. V. Khomenko and I. A. Lyashenko, Zh. Tekh. Fiz. 75(11), 17 (2005) [Tech. Phys. 50, 1408 (2005)].Google Scholar
  15. 15.
    A. V. Khomenko and I. A. Lyashenko, Zh. Tekh. Fiz. 77(9), 137 (2007) [Tech. Phys. 52, 1239 (2007)].Google Scholar
  16. 16.
    A. V. Khomenko and I. A. Lyashenko, Fluct. Noise Lett. 7, L111 (2007).CrossRefGoogle Scholar
  17. 17.
    A. V. Khomenko, I. A. Lyashenko, and V. N. Borisyuk, Ukr. Fiz. Zh. 54, 1142 (2009).Google Scholar
  18. 18.
    A. V. Khomenko, I. A. Lyashenko, and V. N. Borisyuk, Fluct. Noise Lett. 9, 19 (2010).CrossRefGoogle Scholar
  19. 19.
    A. Carpinteri, A. Spagnoli, and S. Vantadori, Fatigue Fract. Eng. Mater. Struct. 25, 619 (2002).CrossRefGoogle Scholar
  20. 20.
    A. Carpinteri, A. Spagnoli, and S. Vantadori, Int. J. Fatigue 31, 927 (2009).CrossRefGoogle Scholar
  21. 21.
    A. Carpinteri and A. Spagnoli, Int. J. Fatugue 26, 125 (2004).MATHCrossRefGoogle Scholar
  22. 22.
    A. Carpinteri, A. Spagnoli, and S. Vantadori, Eng. Fract. Mech. 77, 974 (2010).CrossRefGoogle Scholar
  23. 23.
    A. L. Demirel and S. Granick, J. Chem. Phys. 109, 6889 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    G. Reiter, A. L. Demirel, J. Peanasky, L. L. Cai, and S. Granick, J. Chem. Phys. 101, 2606 (1994).ADSCrossRefGoogle Scholar
  25. 25.
    A. V. Khomenko and I. A. Lyashenko, Fiz. Tverd. Tela (St. Petersburg) 49, 886 (2007) [Phys. Solid State 49, 936 (2007)].Google Scholar
  26. 26.
    A. V. Khomenko and I. A. Lyashenko, Phys. Lett. A 366, 165 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    A. V. Khomenko and I. A. Lyashenko, Zh. Tekh. Fiz. 80(1), 27 (2010) [Tech. Phys. 55, 26 (2010)].Google Scholar
  28. 28.
    A. V. Khomenko and I. A. Lyashenko, Trenie Iznos 31, 412 (2010).Google Scholar
  29. 29.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980), Part 1.Google Scholar
  30. 30.
    A. Lemaitre and J. Carlson, Phys. Rev. E 69, 061611 (2004).ADSCrossRefGoogle Scholar
  31. 31.
    A. Lemaitre, Phys. Rev. Lett. 89, 195503 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    C.-R. Yang, Y.-C. Chiou, and R.-T. Lee, Tribol. Int. 32, 443 (1999).CrossRefGoogle Scholar
  33. 33.
    C.-R. Yang, R.-T. Lee, and Y.-C. Chiou, Tribol. Int. 30, 719 (1997).CrossRefGoogle Scholar
  34. 34.
    G. Luengo, J. Israelachvili, and S. Granick, Wear 200, 328 (1996).CrossRefGoogle Scholar
  35. 35.
    V. L. Popov, Pis’ma Zh Tekh. Fiz. 25(20), 31 (1999) [Tech. Phys. Lett. 25, (10) 815 (1999)].Google Scholar
  36. 36.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge Univ., New York, 1992).Google Scholar
  37. 37.
    I. A. Lyashenko, Zh. Tekh. Fiz. 81(5), 115 (2011) [Tech. Phys. 56, 701 (2011)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Sumy State UniversitySumyUkraine

Personalised recommendations