Technical Physics

, 56:701 | Cite as

Tribological properties of dry, fluid, and boundary friction

Surface, Electron and Ion Emission

Abstract

A friction pair is studied under lubricant-free dry friction, hydrodynamic, and boundary lubricant conditions. It is shown that, in dry friction, the number of harmonics in the time dependence of the coordinate of the lower rubbing block decreases with increasing frequency of an applied periodic action until the interacting surfaces stick when a critical frequency is exceeded. The surfaces then move together. The behavior of a friction pair with a lubricant made of a Newtonian fluid, pseudoplastic fluid, or dilatant non-Newtonian fluid is analyzed in the hydrodynamic case. It is found that a pseudoplastic fluid or a boundary lubricant leads a intermittent (stick-slip) friction mode, which is one of the main causes of fracture of rubbing parts, over a wide parametric range.

References

  1. 1.
    B. N. J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 2000).MATHGoogle Scholar
  2. 2.
    V. L. Popov, Zh. Tekh. Fiz. 71(5), 100 (2001) [Tech. Phys. 46, 605 (2001)].Google Scholar
  3. 3.
    J. M. Carlson and A. A. Batista, Phys. Rev. E 53, 4153 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    A. V. Khomenko and O. V. Yushchenko, Phys. Rev. E 68, 036110 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    A. E. Filippov, J. Klafter, and M. Urbakh, Phys. Rev. Lett. 92, 135503 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    O. M. Braun and A. G. Naumovets, Surf. Sci. Rep. 60, 79 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    J. Israelachvili, Surf. Sci. Rep. 14, 109 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    A. L. Demirel and S. Granick, J. Chem. Phys. 109, 6889 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    G. Reiter, A. L. Demirel, J. Peanasky, L. L. Cai, and S. Granick, J. Chem. Phys. 101, 2606 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    H. Yoshizawa and J. Israelachvili, J. Phys. Chem. 97, 11 300 (1993).Google Scholar
  11. 11.
    A. V. Khomenko, I. A. Lyashenko, and V. N. Borisyuk, Ukr. Fiz. Zh. 54, 1139 (2009).Google Scholar
  12. 12.
    A. V. Khomenko and Ya. A. Lyashenko, Zh. Tekh. Fiz. 80(1), 27 (2010) [Tech. Phys. 55, 26 (2010)].Google Scholar
  13. 13.
    A. V. Khomenko, I. A. Lyashenko, and V. N. Borisyuk, Fluct. Noise Lett. 9, 19 (2010).CrossRefGoogle Scholar
  14. 14.
    A. V. Khomenko and I. A. Lyashenko, Phys. Lett. A 366, 165 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    C.-R. Yang, Y.-C. Chiou, and R.-T. Lee, Tribol. Int. 32, 443 (1999).CrossRefGoogle Scholar
  16. 16.
    C.-R. Yang, R.-T. Lee, and Y.-C. Chiou, Tribol. Int. 30, 719 (1997).CrossRefGoogle Scholar
  17. 17.
    G. Luengo, J. Israelachvili, and S. Granick, Wear 200, 328 (1996).CrossRefGoogle Scholar
  18. 18.
    A. V. Khomenko and I. A. Lyashenko, Cond. Matt. Phys. 9, 695 (2006).Google Scholar
  19. 19.
    I. A. Lyashenko, A. V. Khomenko, and L. S. Metlov, Zh. Tekh. Fiz. 80(8), 120 (2010) [Tech. Phys. 55, 1193 (2010)].Google Scholar
  20. 20.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980), Part 1.Google Scholar
  21. 21.
    L. S. Metlov, Metallofiz. Noveishie Tekhnol. 29, 335 (2007).Google Scholar
  22. 22.
    L. S. Metlov, Izv. Ross. Akad. Nauk, Ser. Fiz. 72, 1353 (2008).Google Scholar
  23. 23.
    L. S. Metlov, Phys. Rev. E 81, 051121 (2010).ADSCrossRefGoogle Scholar
  24. 24.
    L. M. Kachanov, The Bases of Plasticity Theory (Nauka, Moscow, 1969) [in Russian].Google Scholar
  25. 25.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (URSS, Moscow, 2003; Pergamon, New York, 1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Sumy State UniversitySumyUkraine

Personalised recommendations