Advertisement

Technical Physics

, Volume 56, Issue 3, pp 423–426 | Cite as

Thermal expansion of Ni2.08Mn0.96Ga0.96 alloy

  • I. I. Musabirov
  • Kh. Ya. Mulyukov
  • V. V. Koledov
  • V. G. Shavrov
Short Communications

Abstract

The temperature dependence of the thermal expansion of polycrystalline Ni2.08Mn0.96Ga0.96 alloy samples is studied in the as-cast state and after homogenizing annealing. A sample in which twins are mainly oriented normal to the sample length shortens jumpwise during the martensitic transformation. A sample in which twins are parallel to its length elongates jumpwise. After annealing, both samples do not exhibit a jumplike change in length during the phase transformation. When an annealed sample is cooled in a magnetic field, its length again changes jumpwise in the phase transformation range.

Keywords

Thermal Expansion Phase Transformation Technical Physic Martensitic Transformation Annealed Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. H. Wang, G. H. Wu, J. L. Chen, C. H. Yu, S. X. Gao, W. S. Zhan, Z. Wang, Z. Y. Gao, Y. F. Zheng, and L. C. Zhao, Appl. Phys. Lett. 77, 3245 (2000).CrossRefADSGoogle Scholar
  2. 2.
    Y. T. Cui, Z. H. Liu, M. Zhang, G. D. Liu, Y. X. Li, W. L. Wang, and G. H. Wu, IEEE Trans. Magn. 41, 1086 (2005).CrossRefADSGoogle Scholar
  3. 3.
    F. Xiong, Y. Liu, and E. Pagounis, J. Magn. Magn. Mater. 285, 410 (2005).CrossRefADSGoogle Scholar
  4. 4.
    A. N. Vasilev, E. I. Estrin, V. V. Khovailo, A. D. Bozhko, R. A. Ischuk, M. Matsumoto, T. Takagi, and J. Tani, Int. J. Appl. Electromagn. Mech. 12, 35 (2000).Google Scholar
  5. 5.
    R. N. Imashev, V. V. Koledov, Kh. Ya. Mulyukov, I. Z. Sharipov, and V. G. Shavrov, Fiz. Tverd. Tela (St. Petersburg) 47, 1867 (2005) [Phys. Solid State 47, 1944 (2005)].Google Scholar
  6. 6.
    K. Ullakko, J. K. Huang, C. Kantner, R. C. O’Handley, and V. V. Kokorin, Appl. Phys. Lett. 69, 1966 (1996).CrossRefADSGoogle Scholar
  7. 7.
    A. Sozinov, A. A. Likhachev, N. Lanska, and K. Ullakko, Appl. Phys. Lett. 80, 1746 (2002).CrossRefADSGoogle Scholar
  8. 8.
    G. Liu, J. Chen, Y. Cui, Zh. Liu, M. Zhang, G. Wu, E. Bruck, F. R. de Boer, F. Meng, Y. Li, and J. Qu, Solid State Commun. 130, 687 (2004).CrossRefADSGoogle Scholar
  9. 9.
    M. R. Sullivan, D. A. Ateya, S. J. Pirotta, A. A. Shah, G. H. Wu, and H. D. Chopra, J. Appl. Phys. 95, 6951 (2004).CrossRefADSGoogle Scholar
  10. 10.
    N. Okamoto, T. Fukuda, T. Kakeshita, T. Takeuchi, and K. Kishio, Sci. Techn. Adv. Mater. 5, 29 (2004).CrossRefGoogle Scholar
  11. 11.
    A. A. Likhachev and K. Ullakko, Phys. Lett. A 275, 142 (2000).CrossRefADSGoogle Scholar
  12. 12.
    Kh. Ya. Mulyukov and I. I. Musabirov, Zh. Tekh. Fiz. 78(6), 129 (2008) [Tech. Phys. 53, 802 (2008)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • I. I. Musabirov
    • 1
  • Kh. Ya. Mulyukov
    • 1
  • V. V. Koledov
    • 2
  • V. G. Shavrov
    • 2
  1. 1.Institute of Problems of Metal SuperplasticityRussian Academy of SciencesUfaBashkortostan, Russia
  2. 2.Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations