Technical Physics

, Volume 55, Issue 6, pp 871–873 | Cite as

Thermal stability of the phase composition, structure, and stressed state of ion-plasma condensates in the Zr-Ti-Si-N system

  • V. M. Beresnev
  • O. V. Sobol’
  • A. D. Pogrebnjak
  • P. V. Turbin
  • S. V. Litovchenko
Short Communications


The results of studying the effect of high-tempera ture annealing in vacuum and in air on the phase composition, structure, and stressed state of ion-plasma condensates in the Zr-Ti-Si-N system are reported. In going from air annealing to vacuum annealing, the amount of active oxygen atoms decreases and the phase composition of the condensate remains stable to 1000°C or higher. A change in the crystal phase composition shows up, for the first place, in the crystallization of silicon nitride with the intense formation of hexagonal β-Si3N4 crystallites and also in the feeble formation of ZrO2 dioxide. The latter process does not lead to the decomposition of the (Zr, Ti)N solid solution: it merely increases the partial concentration of the titanium component.


Silicon Nitride Vacuum Annealing Titanium Component Active Oxygen Atom Metallic Sublattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V M. Beresnev, Usp. Fiz. Nauk 179, 35 (2009) [Phys. Usp. 52, 29 (2009)].CrossRefGoogle Scholar
  2. 2.
    S. Veprek, M. G. J. Veprek-Heijmam, P. Karvankova, and J. Prochazka, Thin Solid Films 476, 1 (2005).CrossRefADSGoogle Scholar
  3. 3.
    N. A. Azarenkov, V. M. Beresnev, and A. D. Pogrebnjak, Structure and Properties of Coatings and Modified Layers of Materials (Izd. KhNU, Kharkov, 2007) [in Russian].Google Scholar
  4. 4.
    Nanostructured Coating, Ed. by A. Gavaleiro and J. T. De Hosson (Springer, Berlin, 2006).Google Scholar
  5. 5.
    E. N. Reshetnyak and V. E. Strel’nitskii, in Proceedings of the Kharkov Nanotechnology Assembly, Kharkov, 2007, Vol. 1,pp. 6–16.Google Scholar
  6. 6.
    V.A. Barvinok, Control of the Stressed State and Properties of Plasma Coatings (Mashinostroenie, Moscow, 1990) [in Russian].Google Scholar
  7. 7.
    N. H. Hoang, D. R. McKenzie, W. D. McFall, and Y. Yin, J. Appl. Phys. 80, 6279 (1996).CrossRefADSGoogle Scholar
  8. 8.
    P. J. Kelly and R. D. Arnell, J. Vacuum 56, 159 (2000).CrossRefGoogle Scholar
  9. 9.
    T. Matsue, T. Hanabusa, and Y. Miki, Thin Solid Films 343–344, 257 (1999).CrossRefGoogle Scholar
  10. 10.
    Yu. I. Golovin, Introduction to Nanoengineering (Mashinostroenie, Moscow, 2007) [in Russian].Google Scholar
  11. 11.
    Ya. D. Vishnyakov, Modern Methods for Investigating the Structure of Deformed Crystals (Metallurgiya, Moscow, 1975) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. M. Beresnev
    • 1
  • O. V. Sobol’
    • 2
  • A. D. Pogrebnjak
    • 3
  • P. V. Turbin
    • 4
  • S. V. Litovchenko
    • 5
  1. 1.Scientific Center of Physics and Technology, Ministry of Education and Science of UkraineNational Academy of Sciences of UkraineKharkovUkraine
  2. 2.National Technical University Kharkiv Polytechnical Institute (KhPI)KharkovUkraine
  3. 3.Sumy Institute for Surface ModificationSumyUkraine
  4. 4.Sumy National Agrarian UniversitySumyUkraine
  5. 5.Karazin National UniversityKharkovUkraine

Personalised recommendations