Advertisement

Technical Physics

, Volume 55, Issue 6, pp 850–854 | Cite as

Electrically controlled relaxation at twist deformation of a dual-frequency nematic liquid crystal

  • V. N. Vasil’ev
  • E. A. Konshina
  • M. A. Fedorov
  • L. P. Amosova
Optics, Quantum Electronics

Abstract

The relaxation of a dual-frequency liquid crystal at the twist effect and the influence of the external electrical circuit parameters on the relaxation process in the case of a large initial inclination angle (44) of the director are studied. It is found that oscillation arising at the trailing edge of the modulator’s electro-optic response considerably increases the time of relaxation due to the action of a high-frequency electric field. The influence of the electric field on the relaxation time is stronger, the thinner the liquid crystal layer. It is experimentally shown that the duration of the interval between the removal of low-frequency voltage from and the application of high-frequency voltage to the modulator affects the relaxation time.

Keywords

Liquid Crystal Layer Electro Optic Response Twist Deformation Additional Oscillation Twist Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Hyang, C.-H. Wen, and S.-T. Wu, Appl. Phys. Lett. 89, 021103 (2006).CrossRefADSGoogle Scholar
  2. 2.
    E. A. Konshina, M. A. Fedorov, L. P. Amosova, M. V. Isaev, and D. S. Kostomarov, Opt. Zh. 75(10), 73 (2008).Google Scholar
  3. 3.
    E. A. Konshina, A. E. Rybnikova, M. A. Fedorov, L. P. Amosova, N. L. Ivanova, M. V. Isaev, and D. S. Kostomarov, Zh. Tekh. Fiz. 79(4), 111 (2009) [Tech. Phys. 54, 555 (2009)].Google Scholar
  4. 4.
    H. Wang, T. X. Wu, X. Xinyu Zhu, and S.-T. Wu, J. Appl. Phys. 95, 5502 (2004).CrossRefADSGoogle Scholar
  5. 5.
    A. Kubono, Y. Kyukane, R. Akiyama, and K. Tanaka, J. Appl. Phys. 90, 5859 (2001).CrossRefADSGoogle Scholar
  6. 6.
    A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, Appl. Phys. Lett. 83, 3864 (2003).CrossRefADSGoogle Scholar
  7. 7.
    P. D. Brimicombe, L. A. Parry-Jones, S. J. Elston, and E. P. Raynes, J. Appl. Phys. 98, 104104 (2005).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. N. Vasil’ev
    • 1
  • E. A. Konshina
    • 1
  • M. A. Fedorov
    • 1
  • L. P. Amosova
    • 1
  1. 1.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations