Advertisement

Technical Physics

, Volume 55, Issue 5, pp 636–644 | Cite as

Effect of evaporation conditions on the spatial redistribution of components in an evaporating liquid drop on a horizontal solid substrate

  • Yu. Yu. Tarasevich
  • O. P. Isakova
  • V. V. Kondukhov
  • A. V. Savitskaya
Gases and Liquids

Abstract

A convection-diffusion equation is used to study the effect of the character of evaporation on the substance redistribution in a drying drop of a multicomponent fluid. Diffusion is shown to hinder the motion of substances with a high diffusion coefficient toward the periphery of the evaporating drop. Qualitatively, the model law describing the vapor flux density does not affect the character of substance redistribution.

Keywords

Technical Physic Capillary Flow Drop Height Evaporation Condition Drop Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. E. Helseth and T. M. Fischer, Phys. Rev. Lett. 68, 042601 (2003).ADSGoogle Scholar
  2. 2.
    J. Xu, J. Xia, S. W. Hong, Z. Lin, Q. Qiu, and Y. Yang, Phys. Rev. Lett. 96, 066104 (2006).CrossRefADSGoogle Scholar
  3. 3.
    S. S. Abramchuk, A. R. Khokhlov, T. Iwataki, H. Oana, and K. Yoshikawa, Europhys. Lett. 55, 294 (2001).CrossRefADSGoogle Scholar
  4. 4.
    L. V. Savina, Crystalloscopic Structures of Blood Serum of Healthy People and Patients (Sov. Kuban’, Krasnodar, 1999) [in Russian].Google Scholar
  5. 5.
    V. N. Shabalin and S. N. Shatokhina, Morphology of Human Biological Liquids (Khrizostom, Moscow, 2001) [in Russian].Google Scholar
  6. 6.
    E. A. Shats and A. K. Ayupova, in SCENAR-Therapy and SCENAR-Expertise: Collection of Articles, Issue 8, 2002.Google Scholar
  7. 7.
    A. A. Yushchenko, A. K. Ayupova, S. N. Shatokhina, N. G. Urlyapova, M. N. Dyachina, and R. Z. Bogdanov, RF Patent No. 21700431, Byull. Izobret., No 19 (2001).Google Scholar
  8. 8.
    A. A. Yushchenko, A. D. Daudova, A. K. Ayupova, N. G. Urlyapova, and S. N. Shatokhina, RF Patent No. 2232387, Byull. Izobret., No 17 (2004).Google Scholar
  9. 9.
    T. A. Yakhno, O. A. Sedova, A. G. Sanin, and A. S. Pelyushchenko, Zh. Tekh. Fiz. 73(4), 23 (2003) [Tech. Phys. 48, 399 (2003)].Google Scholar
  10. 10.
    C. Koch, Kolloid-Z. 138, 81 (1954).CrossRefGoogle Scholar
  11. 11.
    E. G. Rapis, Pis’ma Zh. Tekh. Fiz. 14, 1560 (1988) [Sov. Tech. Phys. Lett. 14, 679 (1988)].Google Scholar
  12. 12.
    E. Rapis, Protein and Life: Self-Assembling and Symmetry of Protein Nanostructures (MiltaPKPTIT, Moscow, 2003; Filobiblon, Yerusalem, 2003).Google Scholar
  13. 13.
    T. Yakhno, J. Colloid Interface Sci. 318, 225 (2008).CrossRefGoogle Scholar
  14. 14.
    F. Parise and C. Allain, J. Phys. II (France) 6, 1111 (1996).CrossRefGoogle Scholar
  15. 15.
    R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature 389, 827 (1997).CrossRefADSGoogle Scholar
  16. 16.
    R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Phys. Rev. E 62, 756 (2000).CrossRefADSGoogle Scholar
  17. 17.
    R. D. Deegan, Phys. Rev. E 61, 475 (2000).CrossRefADSGoogle Scholar
  18. 18.
    B. J. Fischer, Langmuir 18, 60 (2002).CrossRefGoogle Scholar
  19. 19.
    Yu. O. Popov, Phys. Rev. E 71, 036313 (2005).CrossRefADSGoogle Scholar
  20. 20.
    Yu. Yu. Tarasevich and D. M. Pravoslavnova, Zh. Tekh. Fiz. 77(2), 17 (2007) [Tech. Phys. 52, 159 (2007)].Google Scholar
  21. 21.
    Yu. Yu. Tarasevich and D. M. Pravoslavnova, Eur. Phys. J. E 22, 331 (2007).CrossRefGoogle Scholar
  22. 22.
    L. G. Loitsyanskii, Mechanics of Liquids and Gases (Nauka, Moscow, 1987; Pergamon, Oxford, 1966).Google Scholar
  23. 23.
    V. G. Levich, Physicochemical Hydrodynamics (Akad. Nauk SSSR, Moscow, 1952] [in Russian].Google Scholar
  24. 24.
    H. Hu and R. G. Larson, Langmuir 21, 3963 (2005).CrossRefGoogle Scholar
  25. 25.
    H. Hu and R. G. Larson, Langmuir 21, 3972 (2005).CrossRefGoogle Scholar
  26. 26.
    R. Mollaret, K. Sefiane, J. R. E. Christy, and D. Veyret, Chem. Eng. Res. Des. 82, 471 (2004).CrossRefGoogle Scholar
  27. 27.
    H. Hu and R. G. Larson, J. Phys. Chem. B 106, 1334 (2002).CrossRefGoogle Scholar
  28. 28.
    L. Pauchard, F. Parisse, and C. Allain, Phys. Rev. E 59, 3737 (1999).CrossRefADSGoogle Scholar
  29. 29.
    L. Pauchard and C. Allain, C. R. Physique 4, 231 (2003).CrossRefADSGoogle Scholar
  30. 30.
    L. Pauchard and C. Allain, Europhys. Lett. 62, 897 (2003).CrossRefADSGoogle Scholar
  31. 31.
    L. Pauchard and C. Allain, Phys. Rev. E 68, 052801 (2003).CrossRefADSGoogle Scholar
  32. 32.
    Y. Gorand, L. Pauchard, G. Calligari, J. P. Hulin, and C. Allain, Langmuir 20, 5138 (2004).CrossRefGoogle Scholar
  33. 33.
    M. Cachile, O. Bénichou, and A. M. Cazabat, Langmuir 18, 7985 (2002).CrossRefGoogle Scholar
  34. 34.
    M. Cachile, O. Bénichou, C. Poulard, and A. M. Cazabat, Langmuir 18, 8070 (2002).CrossRefGoogle Scholar
  35. 35.
    C. Poulard, O. Bénichou, and A. M. Cazabat, Langmuir 19, 8828 (2003).CrossRefGoogle Scholar
  36. 36.
    D. M. Anderson and S. H. Davis, Phys. Fluids 7, 248 (1995).zbMATHCrossRefADSGoogle Scholar
  37. 37.
    G. J. Dunn, S. K. Wilson, B. R. Duffy, S. David, and K. A. Sefiane, Colloids Surf., A 298, 108 (2007).CrossRefGoogle Scholar
  38. 38.
    P. Takhistov and H.-C. Chang, Ind. Eng. Chem. Res. 41, 6256 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • Yu. Yu. Tarasevich
    • 1
  • O. P. Isakova
    • 1
  • V. V. Kondukhov
    • 1
  • A. V. Savitskaya
    • 1
  1. 1.Astrakhan State UniversityAstrakhanRussia

Personalised recommendations