Technical Physics

, Volume 55, Issue 2, pp 230–235 | Cite as

Interrelation between the threshold characteristics of erosion and spall fracture

  • Yu. V. Petrov
  • V. I. SmirnovEmail author
Solid State


Threshold diagrams of erosion and spall fracture are constructed based on the concept of incubation time of the fracture. It is shown that in the case of a defectless material, the incubation time can be estimated from the spallation or erosion experimental data. The temperature dependence of the threshold velocities of microparticle impact is considered. The effect of increasing the dynamic yield stress upon an increase in the surface temperature of the target material is obtained for small-size microparticles. The relationship with an analogous effect in the spallation experiments is discussed.


Threshold Rate Erodent Particle Spall Fracture Threshold Characteristic Dynamic Yield Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. V. Petrov and A. A. Utkin, Fiz.-Khim. Mekh. Mater. 25(2), 38 (1989).Google Scholar
  2. 2.
    Y. V. Petrov, N. F. Morozov, and V. I. Smirnov, Fatigue Fract. Eng. Mater. Struct. 26, 363 (2003).CrossRefGoogle Scholar
  3. 3.
    N. F. Morozov and Y. V. Petrov, Dynamics of Fracture (SPbGU, St. Peterburg, 1997; Springer, Berlin, 2000).Google Scholar
  4. 4.
    Yu. V. Kolesnikov and E. M. Morozov, Mechanics of Contact Fracture (Nauka, Moscow, 1989) [in Russian].Google Scholar
  5. 5.
    M. V. Zernin and E. M. Morozov, in Mechanics of Contact Interactions (Fizmatlit, Moscow, 2001), pp. 624–639.Google Scholar
  6. 6.
    L. I. Urbanovich and E. M. Kramchenkov, in Investigation of Elasticity and Plasticity (St.-Peterb. Gos. Univ., St. Petersburg, 1999), Issue 18, pp. 263–265.Google Scholar
  7. 7.
    N. A. Zlatin, G. S. Pugachev, S. M. Mochalov, and A. M. Bragov, Fiz. Tverd. Tela (Leningrad) 17, 2599 (1975) [Sov. Phys. Solid State 17, 1730 (1975)].Google Scholar
  8. 8.
    V. I. Smirnov, Prikl. Mekh. Tekh. Fiz. 47(5), 97 (2006).zbMATHGoogle Scholar
  9. 9.
    G. I. Kanel’ and S. V. Razorenov, Fiz. Tverd. Tela (St. Petersburg) 43, 839 (2001) [Phys. Solid State 43, 871 (2001)].Google Scholar
  10. 10.
    G. I. Kanel’, S. V. Razorenov, E. B. Zaretskii, B. Kherrman, and L. Maier, Fiz. Tverd. Tela (St. Petersburg) 45, 625 (2003) [Phys. Solid State 45, 656 (2003)].Google Scholar
  11. 11.
    Yu. V. Petrov and E. V. Sitnikova, Zh. Tekh. Fiz. 75(8), 71 (2005) [Tech. Phys. 50, 1034 (2005)].Google Scholar
  12. 12.
    N. F. Morozov and Yu. V. Petrov, Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 72 (1996).Google Scholar
  13. 13.
    Erosion, Ed. by C. Preece (Academic, New York, 1979; Mir, Moscow, 1982).Google Scholar
  14. 14.
    B. Y. Hockey, S. M. Wiederhorn, and H. Johnson, Fracture Mechanics of Ceramics, Vol. 3: Flaws and Testing (Plenum, New York, 1978).Google Scholar
  15. 15.
    A. A. Gruzdkov, Yu. V. Petrov, and V. I. Smirnov, Fiz. Tverd. Tela (St. Petersburg) 44, 1987 (2002) [Phys. Solid State 44, 2080 (2002)].Google Scholar
  16. 16.
    J. D. Campbell, Acta Metall. 1(5), 64 (1953).Google Scholar
  17. 17.
    A. A. Gruzdkov and Yu. V. Petrov, Dokl. Akad. Nauk 364, 766 (1999) [Dokl. Phys. 44, 114 (1999)].Google Scholar
  18. 18.
    M. A. Meyers, Dynamic Behavior of Materials (Wiley, New York, 1994), Chap. 13, pp. 323–381.zbMATHGoogle Scholar
  19. 19.
    G. P. Karzov, B. Z. Margolin, and V. A. Shvetsova, Physico-Mechanical Modeling of Fracture Processes (Politekhnika, St. Petersburg, 1993) [in Russian].Google Scholar
  20. 20.
    J. P. Young and A. W. Ruff, J. Basic Eng. 99, 25 (1977).Google Scholar
  21. 21.
    C. E. Smeltzer, M. E. Gulden, and W. A. Compton, J. Basic Eng. 92, 255 (1970).Google Scholar
  22. 22.
    V. I. Smirnov, Probl. Prochn., No. 1, 69 (2007).Google Scholar
  23. 23.
    Yu. V. Petrov, Dokl. Akad. Nauk SSSR 321, 66 (1991) [Sov. Phys. Dokl. 36, 802 (1991)].Google Scholar
  24. 24.
    P. A. Glebovskii and Yu. V. Petrov, Fiz. Tverd. Tela (St. Petersburg) 46, 1021 (2004) [Phys. Solid State 46, 1051 (2004)].Google Scholar
  25. 25.
    V. R. Regel, A. I. Slutsker, and E. E. Tomashevskii, Kinetic Nature of Strength of Solids (Nauka, Moscow, 1974) [in Russian].Google Scholar
  26. 26.
    A. V. Kashtanov and Yu. V. Petrov, in Problems of Mechanics of Strained Solids and Rocks: Collection of Scientific Works (Fizmatlit, Moscow, 2006), pp. 296–304.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Institute for Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Transport UniversitySt. PetersburgRussia

Personalised recommendations