Technical Physics

, Volume 55, Issue 2, pp 210–218

High-pressure runaway-electron-preionized diffuse discharges in a nonuniform electric field

  • V. F. Tarasenko
  • E. Kh. Baksht
  • A. G. Burachenko
  • I. D. Kostyrya
  • M. I. Lomaev
  • D. V. Rybka
Gas Discharges, Plasma

Abstract

High-pressure nanosecond diffuse (volume) discharges in a nonuniform electric field are studied experimentally using a recording system with a ?100-ps time resolution. As the voltage pulse shrinks to a width of ≈100 ps, the initiation of a diffuse discharge without a source of additional ionization is facilitated; specifically, a runaway-electron-preionized diffuse discharge is ignited in atmospheric-pressure air in the case of short interelectrode gaps. It is found that a major energy deposit into the plasma of this discharge is from an abnormal glow discharge following a maximum of the gap voltage.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gas Lasers, Ed. by E. W. McDaniel and W. L. Nighan (Academic, New York, 1982).Google Scholar
  2. 2.
    G. A. Mesyats, V. V. Osipov, and V. F. Tarasenko, Pulsed Gas Lasers (Nauka, Moscow, 1991; SPIE, Washington, 1995).Google Scholar
  3. 3.
    Gas Lasers, Ed. by I. Endo and R. F. Walter (CRC, Boca Raton, 2007).Google Scholar
  4. 4.
    G. A. Mesyats, Pulsed Power (Nauka, Moscow, 2004; Springer, Berlin, 2004).Google Scholar
  5. 5.
    R. C. Noggle, E. P. Krider, and J. R. Wayland, J. Appl. Phys. 39, 4746 (1968).CrossRefADSGoogle Scholar
  6. 6.
    L. V. Tarasova, and L. N. Khudyakova, Zh. Tekh. Fiz. 39, 1530 (1969) [Sov. Phys. Tech. Phys. 14, 1148 (1969)].Google Scholar
  7. 7.
    L. V. Tarasova, L. N. Khudyakova, T. V. Loiko, and V. A. Tsukerman, Zh. Tekh. Fiz. 44, 564 (1974) [Sov. Phys. Tech. Phys. 19, 351 (1974)].Google Scholar
  8. 8.
    V. F. Tarasenko, E. K. Baksht, A. G. Burachenko, I. D. Kostyrya, M. I. Lomaev, and D. V. Rybka, Plasma Devices Op. 16, 267 (2008).CrossRefGoogle Scholar
  9. 9.
    I. D. Kostyrya, V. S. Skakun, V. F. Tarasenko, and A. V. Fedenev, Zh. Tekh. Fiz. 74(8), 35 (2004) [Tech. Phys. 49, 987 (2004)].Google Scholar
  10. 10.
    S. B. Alekseev, V. P. Gubanov, I. D. Kostyrya, V. M. Orlovskii, V. S. Skakun, and V. F. Tarasenko, Kvantovaya Elektron. (Moscow) 34, 1007 (2004) [Quantum Electronics 34, 1007 (2004)].CrossRefGoogle Scholar
  11. 11.
    I. D. Kostyrya and V. F. Tarasenko, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 12, 85 (2004) [Russian Physics Journal 47, 1314 (2004)].Google Scholar
  12. 12.
    I. D. Kostyrya, V. M. Orlovskii, V. F. Tarasenko, F. N. Tkachev, and S. I. Yakovlenko, Zh. Tekh. Fiz. 75(7), 65 (2005) [Tech. Phys. 50, 881 (2005)].Google Scholar
  13. 13.
    E. Kh. Baksht, V. F. Tarasenko, M. I. Lomaev, and D. V. Rybka, Pis’ma Zh. Tekh. Fiz. 33(9), 29 (2007) [Tech. Phys. Lett. 33, 373 (2007)].Google Scholar
  14. 14.
    V. V. Bratchikov, K. A. Gagarinov, I. D. Kostyrya, V. F. Tarasenko, A. N. Tkachev, and S. I. Yakovlenko, Zh. Tekh. Fiz. 77(7), 34 (2007) [Tech. Phys. 52, 856 (2007)].Google Scholar
  15. 15.
    E. Kh. Baksht, A. G. Burachenko, M. I. Lomaev, D. V. Rybka, and V. F. Tarasenko, Zh. Tekh. Fiz. 78(1), 98 (2008) [Tech. Phys. 53, 93 (2008)].Google Scholar
  16. 16.
    V. F. Tarasenko, S. K. Lyubutin, S. N. Rukin, B. G. Slovikovskii, I. D. Kostyrya, and V. M. Orlovskii, Zh. Tekh. Fiz. 75(11), 69 (2005) [Tech. Phys. 50, 1462 (2005)].Google Scholar
  17. 17.
    V. F. Tarasenko, Appl. Phys. Lett. 88, 1501 (2006).CrossRefGoogle Scholar
  18. 18.
    E. Kh. Baksht, D. V. Rybka, M. I. Lomaev, and V. F. Tarasenko, Kvantovaya Elektron. (Moscow) 36, 576 (2006) [Quantum Electronics 36, 576 (2006)].Google Scholar
  19. 19.
    A. V. Perminov and A. A. Tren’kin, Zh. Tekh. Fiz. 75(9), 52 (2005) [Tech. Phys. 50, 1158 (2005)].Google Scholar
  20. 20.
    P. B. Repin, A. N. Rep’ev, and N. G. Danchenko, Pis’ma Zh. Tekh. Fiz. 33(23), 51 (2007) [Tech. Phys. Lett. 33, 1011 (2007)].Google Scholar
  21. 21.
    P. B. Repin and A. G. Rep’ev, Zh. Tekh. Fiz. 78(1), 78 (2008) [Tech. Phys. 53, 73 (2008)].Google Scholar
  22. 22.
    V. I. Karelin and A. A. Tren’kin, Pis’ma Zh. Tekh. Fiz. 35(9), 37 (2009) [Tech. Phys. Lett. 35, 407 (2009)].Google Scholar
  23. 23.
    I. D. Kostyrya, V. F. Tarasenko, and D. V. Shitts, Prib. Tekh. Eksp., No. 4, 159 (2008).Google Scholar
  24. 24.
    L. M. Vasilyak, S. V. Kostyuchenko, N. N. Kudryavtsev, and I. V. Filigin, Usp. Fiz. Nauk 164, 263 (1994) [Phys. Usp. 37, 247 (1994)].CrossRefGoogle Scholar
  25. 25.
    Runaway Electron Beams and Discharges on a Background-Electron Multiplication Wave in Dense Gases: Collection of Scientific Works of Prokhorov Institute of General Physics, Russian Academy of Sciences, Ed. by S. I. Yakovlenko (Nauka, Moscow, 2007) [in Russian].Google Scholar
  26. 26.
    G. A. Mesyats, Ektons in Vacuum Discharge: Break-down, Spark, Arc (Nauka, Moscow, 2000) [in Russian].Google Scholar
  27. 27.
    E. Kh. Baksht, M. I. Lomaev, D. V. Rybka, D. A. Sorokin, and V. F. Tarasenko, Zh. Tekh. Fiz. 78(12), 29 (2008) [Tech. Phys. 53, 1560 (2008)].Google Scholar
  28. 28.
    G. A. Askar’yan, Tr. Fiz. Inst. Akad. Nauk SSSR 66, 66 (1973).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. F. Tarasenko
    • 1
  • E. Kh. Baksht
    • 1
  • A. G. Burachenko
    • 1
  • I. D. Kostyrya
    • 1
  • M. I. Lomaev
    • 1
  • D. V. Rybka
    • 1
  1. 1.Institute of High-Current Electronics, Siberian BranchTomskRussia

Personalised recommendations