Technical Physics

, Volume 55, Issue 1, pp 26–32 | Cite as

Periodic intermittent regime of a boundary flow

Theoretical and Mathematical Physics

Abstract

Melting of an ultrathin lubricant film during friction between two atomically smooth surfaces is investigated using the Lorentz model for approximating the viscoelastic medium. Second-order differential equations describing damped harmonic oscillations are derived for three boundary relations between the shear stresses, strain, and temperature relaxation times. In all cases, phase portraits and time dependences of stresses are constructed. It is found that under the action of a random force (additive uncorrelated noise), an undamped oscillation mode corresponding to a periodic intermittent regime sets in, which conforms to a periodic stick-slip regime of friction that is mainly responsible for fracture of rubbing parts. The conditions in which the periodic intermittent regime is manifested most clearly are determined, as well as parameters for which this regime does not set in the entire range of the friction surface temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Yoshizawa and J. Israelachvili, J. Chem. Phys. 97, 11300 (1993).CrossRefGoogle Scholar
  2. 2.
    G. Reiter, A. L. Demirel, J. Peanasky, L. L. Cai, and S. Granick, J. Chem. Phys. 101, 2606 (1994).CrossRefADSGoogle Scholar
  3. 3.
    A. L. Demirel and S. Granick, J. Chem. Phys. 109, 6889 (1998).CrossRefADSGoogle Scholar
  4. 4.
    V. L. Popov, Zh. Tekh. Fiz. 71(5), 100 (2001) [Tech. Phys. 46, 605 (2001)].Google Scholar
  5. 5.
    A. E. Filippov, J. Klafter, and M. Urbakh, Phys. Rev. Lett. 92, 135503 (2004).CrossRefADSGoogle Scholar
  6. 6.
    Z. Tshiprut, A. E. Filippov, and M. Urbakh, Phys. Rev. Lett. 95, 016101 (2005).CrossRefADSGoogle Scholar
  7. 7.
    A. V. Khomenko and O. V. Yushchenko, Phys. Rev. E 68, 036110 (2003).CrossRefADSGoogle Scholar
  8. 8.
    O. M. Braun and A. G. Naumovets, Surf. Sci. Rep. 60, 79 (2006).CrossRefADSGoogle Scholar
  9. 9.
    I. S. Aranson, L. S. Tsimring, and V. M. Vinokur, Phys. Rev. B 65, 125402 (2002).CrossRefADSGoogle Scholar
  10. 10.
    J. Israelachvili, Surf. Sci. Rep. 14, 109 (1992).CrossRefADSGoogle Scholar
  11. 11.
    A. V. Khomenko and Ya. A. Lyashenko, Zh. Tekh. Fiz. 75(11), 17 (2005) [Tech. Phys. 50, 1408 (2005)].Google Scholar
  12. 12.
    A. V. Khomenko and Ya. A. Lyashenko, Zh. Tekh. Fiz. 77(9), 137 (2007) [Tech. Phys. 52, 1239 (2007)].Google Scholar
  13. 13.
    A. V. Khomenko and I. A. Lyashenko, Fluctuation Noise Lett. 7, L111 (2007).CrossRefGoogle Scholar
  14. 14.
    A. V. Khomenko and I. A. Lyashenko, Condens. Matter Phys. 9, 695 (2006).Google Scholar
  15. 15.
    A. V. Khomenko and Ya. A. Lyashenko, Fiz. Tverd. Tela (St. Petersburg) 49, 886 (2007) [Phys. Solid State 49 936 (2006)].Google Scholar
  16. 16.
    A. V. Khomenko and I. A. Lyashenko, Phys. Lett. A 366, 165 (2007).CrossRefADSGoogle Scholar
  17. 17.
    Nanotribology and Nanomechanics, Ed. by B. Bhushan (Springer-Verlag, Heidelberg, 2005).Google Scholar
  18. 18.
    A. V. Khomenko and N. V. Prodanov, Fiz. Tekh. Vys. Davlenii 16, 164 (2006).Google Scholar
  19. 19.
    W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing (Cambridge Univ., New York, 1992).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  1. 1.Sumy State UniversitySumyUkraine

Personalised recommendations