Advertisement

Technical Physics

, Volume 54, Issue 5, pp 667–673 | Cite as

Effect of high doses of N+, N+ + Ni+, and Mo+ + W+ ions on the physicomechanical properties of TiNi

  • A. D. Pogrebnyak
  • S. N. Bratushka
  • L. V. Malikov
  • N. Levintant
  • N. K. Erdybaeva
  • S. V. Plotnikov
  • B. P. Gritsenko
Solids

Abstract

The surface layer of an equiatomic TiNi alloy, which exhibits the shape memory effect in the martensitic state, is modified with high-dose implantation of 65-keV N+ ions (the implantation dose is varied from 1017 to 1018 ions/cm2). TiNi samples are implanted by N+, Ni+-N+, and Mo+-W+ ions at a dose of 1017–1018 cm−2 and studied by Rutherford backscattering, scanning electron microscopy, energy dispersive spectroscopy, X-ray diffraction (glancing geometry), and by measuring the nanohardness and the elastic modulus. A Ni+ concentration peak is detected between two maxima in the depth profile of the N+ ion concentration. X-ray diffraction (glancing geometry) of TiNi samples implanted by Ni+ and N+ ions shows the formation of the TiNi (B2), TiN, and Ni3N phases. In the initial state, the elastic modulus of the samples is E = 56 GPa at a hardness of H = 2.13 ± 0.30 GPa (at a depth of 150 nm). After double implantation by Ni+-N+ and W+-Mo+ ions, the hardness of the TiNi samples is ∼2.78 ± 0.95 GPa at a depth of 150 nm and 4.95 ± 2.25 GPa at a depth of 50 nm; the elastic modulus is 59 GPa. Annealing of the samples at 550°C leads to an increase in the hardness to 4.44 ± 1.45 GPa and a sharp increase in the elastic modulus to 236 ± 39 GPa. A correlation between the elemental composition, microstructure, shape memory effect, and mechanical properties of the near-surface layer in TiNi is found.

PACS numbers

52.80.S 61.80.Jh 65.75.g 68.35.Rh 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Treatise on Materials Science and Technology, Ed. by W. F. Wang, Vol. 18: Ion Implantation, Ed. by J. K. Hirvonen (Academic, New York, 1980; Metallurgiya, Moscow, 1985).Google Scholar
  2. 2.
    F. F. Komarov, Ion Implantation in Metals (Energoatomizdat, Moscow, 1990) [in Russian].Google Scholar
  3. 3.
    A. D. Pogrebnjak and A. M. Tolopa, Nucl. Instrum. Methods Phys. Res. B 52, 24 (1990).CrossRefADSGoogle Scholar
  4. 4.
    A. Pogrebnjak, A. Kobzev, B. P. Gritsenko, et al., J. Appl. Phys. 87, 2142 (2000).CrossRefADSGoogle Scholar
  5. 5.
    A. D. Pogrebnjak, A. P. Kobzev, B. P. Gritsenko, et al., Jpn. Appl. Phys. 38, 248 (1999).CrossRefADSGoogle Scholar
  6. 6.
    A. D. Pogrebnjak, V. A. Martynenko, A. D. Mikhaliev, et al., Pis’ma Zh. Tekh. Fiz. 27(14), 88 (2001) [Tech. Phys. Lett. 27, 615 (2001)].Google Scholar
  7. 7.
    V. M. Anishchik and V. V. Uglov, Ion Implantation into Tool Steel (BGU, Minsk, 2000) [in Russian].Google Scholar
  8. 8.
    L. L. Meisner, V. P. Sivokha, Yu. P. Sharkeev, S. N. Kulikov, and B. P. Gritsenko, Zh. Tekh. Fiz. 70(1), 32 (2000) [Tech. Phys. 45, 30 (2000)].Google Scholar
  9. 9.
    L. L. Meisner, Doctoral Dissertation in Mathematical and Physics (Tomsk, 2004).Google Scholar
  10. 10.
    T. Labrande, C. Abromelt, and R. Gotthard, Mater. Sci. Eng., A 438–440, 521 (2006).Google Scholar
  11. 11.
    N. Shevchenko, M.-T. Pham, and M. F. Maitz, Appl. Surf. Sci. 235, 126 (2004).CrossRefADSGoogle Scholar
  12. 12.
    T. Lehnert, S. Tixier, P. Boni, and R. Gotthardt, Mater. Sci. Eng., A 273–275, 713 (1999).Google Scholar
  13. 13.
    J. Humbeeck, Scr. Mater. 50, 179 (2004).CrossRefGoogle Scholar
  14. 14.
    B. Raniecki and C. Lexcelent, Eur. J. Mech. A/Solids 17–20, 185 (1998).CrossRefGoogle Scholar
  15. 15.
    K. Madangopal, Scr. Mater. 53, 875 (2005).CrossRefGoogle Scholar
  16. 16.
    D. Chrobak and H. Morawiec, Scr. Mater. 44, 725 (2001).CrossRefGoogle Scholar
  17. 17.
    L. L. Meisner, V. P. Sivokha, A. I. Lotkov, and L. A. Derevyagina, Physica B 307, 251 (2001).CrossRefADSGoogle Scholar
  18. 18.
    H. Pelletier, D. Muller, P. Mille, and J. J. Grob, Surf. Coat. Technol. 158, 309 (2002).CrossRefGoogle Scholar
  19. 19.
    M. C. Carroll, Ch. Somsen, and G. Eggler, Scr. Mater. 50, 187 (2004).CrossRefGoogle Scholar
  20. 20.
    S. Mandl, J. W. Gerlach, and B. Rauschenbach, Surf. Coat. Technol. 196, 293 (2005).CrossRefGoogle Scholar
  21. 21.
    K. K. Kadyrzhanov, F. F. Komarov, A. D. Pogrebnyak, et al., Ion-Beam and Ion-Plasma Modification of Metals (MGU, Moscow, 2005) [in Russian].Google Scholar
  22. 22.
    D. M. Shirokov and V. Bohac, Instrum. Methods Phys. Res. B 84, 497 (1993).Google Scholar
  23. 23.
    A. D. Pogrebnyak, Yu. N. Kravchenko, V. V. Vasilyuk, et al., Fiz. Khim. Obrab. Mater., No. 11, 35 (2005).Google Scholar
  24. 24.
    W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).CrossRefADSGoogle Scholar
  25. 25.
    A. D. Pogrebnjak, V. T. Shablya, and N. V. Sviridenko, Surf. Coat. Technol. 111, 50 (1999).CrossRefGoogle Scholar
  26. 26.
    L. Feldman and J. W. Mayer, Fundamentals of Surface and Thin Film Analysis (Elsevier, New York, 1986).Google Scholar
  27. 27.
    D. Rej, I. Henis, R. J. Fouck, and Y. J. Kim, Rev. Sci. Instrum. 63, 4934 (1992).CrossRefADSGoogle Scholar
  28. 28.
    N. Levintant, Vacuum 81, 1283 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. D. Pogrebnyak
    • 1
    • 2
  • S. N. Bratushka
    • 1
    • 2
  • L. V. Malikov
    • 1
    • 2
  • N. Levintant
    • 3
  • N. K. Erdybaeva
    • 4
  • S. V. Plotnikov
    • 4
  • B. P. Gritsenko
    • 5
  1. 1.Sumy Institute of Surface ModificationSumyUkraine
  2. 2.Institute of Metal PhysicsNational Academy of Sciences of UkraineSumyUkraine
  3. 3.Institute of Fundamental Technological ResearchWarsawPoland
  4. 4.Eastern-Kazakh State Technical UniversityUst’-KamenogorskKazakhstan
  5. 5.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations