Advertisement

Technical Physics

, Volume 54, Issue 4, pp 555–560 | Cite as

Dynamics of twist effect in a dual-frequency nematic liquid crystal

  • E. A. Konshina
  • M. A. Fedorov
  • A. E. Rybnikova
  • L. P. Amosova
  • N. L. Ivanova
  • M. V. Isaev
  • D. S. Kostomarov
Optics, Quantum Electronics

Abstract

The dynamics of the electrooptical 90° twist effect in a dual-frequency nematic liquid crystal is investigated for wavelengths of 0.65 and 1.55μ m. It is shown that the boundary conditions of the interaction between the phases affect the optical threshold of the twist effect, the contrast, and the working voltage range. The switching time of the twist effect from the off to the on state upon a variation of the amplitude of a rectangular dc voltage pulse from 15 to 50 V changes from 1.5 to 0.3 ms for a thickness of the nematic crystal layer of about 7 μ m. The minimal time of switching from the “on” to the “off” state was 3 ms in the case when relaxation of molecules in a cell with asymmetric boundary conditions was controlled electrically. The dynamic range of transmittance variation at a wavelength of 1.55 μm extended to 30 dB.

PACS numbers

77.84.Nh 78.20.Fm 78.20.Jg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Mao, M. Xu, W. Feng, T. Hyang, K. Wu, and J. Lia, Proc. SPIE 5003, 121 (2003).CrossRefADSGoogle Scholar
  2. 2.
    W. A. Crossland, T. V. Clapp, T. D. Wukinson, I. G. Manolis, A. G. Georgiou, and B. Robertson, Mol. Cryst. Liq. Cryst. 413, 363 (2004).CrossRefGoogle Scholar
  3. 3.
    N. A. Riza and S. A. Khan, Appl. Opt. 43, 449 (2004).Google Scholar
  4. 4.
    X. Liang, Y.-Q. Lu, Y.-H. Wu, F. Du, G.-Y. Wamg, and S.-T. Wu, Jpn. J. Appl. Phys. 44, 1292 (2005).CrossRefADSGoogle Scholar
  5. 5.
    A. B. Goloniv, J. P. Pishnyak, S. V. Shiyanovskii, and O. D. Lavrentovich, Proc. SPIE 6135, 277 (2006).Google Scholar
  6. 6.
    Y. Huang, C.-H. Wen, and S.-T. Wu, Appl. Phys. Lett. 89, 021103-3 (2006).Google Scholar
  7. 7.
    H. Wang, T. X. Wu, X. Xinyu Zhu, and S.-T. Wu, Appl. Phys. 95, 5502 (2004).CrossRefGoogle Scholar
  8. 8.
    A. Kubono, Y. Kuokane, R. Akiyama, and K. Tanaka, J. Appl. Phys. 90, 5855 (2001).CrossRefADSGoogle Scholar
  9. 9.
    A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, Appl. Phys. Lett. 83, 3864 (2003).CrossRefADSGoogle Scholar
  10. 10.
    A. K. Kirby and G. D. Love, Opt. Express 12, 1470 (2004).CrossRefADSGoogle Scholar
  11. 11.
    E. A. Konshina and D. S. Kostomarov, Opt. Zh. 74(10), 88 (2007).Google Scholar
  12. 12.
    S.-T. Wu, U. Efron, and L. D. Hess, Appl. Phys. Lett. 44,842 (1984).CrossRefADSGoogle Scholar
  13. 13.
    E. A. Konshina, M. A. Fedorov, and L. P. Amosova, Opt. Zh. 73(12), 9 (2006).Google Scholar
  14. 14.
    E. A. Konshina and M. A. Fedorov, Pis’ma Zh. Tekh. Fiz. 32(22), 15 (2006) [Tech. Phys. Lett. 32, 964 (2006)].Google Scholar
  15. 15.
    E. A. Konshina, M. A. Fedorov, L. P. Amosova, and Yu. M. Voronin, Zh. Tekh. Fiz. 78(2), 71 (2008) [Tech. Phys. 53, 211 (2008)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • E. A. Konshina
    • 1
  • M. A. Fedorov
    • 1
  • A. E. Rybnikova
    • 1
  • L. P. Amosova
    • 1
  • N. L. Ivanova
    • 1
  • M. V. Isaev
    • 1
  • D. S. Kostomarov
    • 1
  1. 1.St. Petersburg State University of Information TechnologiesSt. PetersburgRussia

Personalised recommendations