Quick-response film photodetector of high-power laser radiation based on the optical rectification effect
- 57 Downloads
- 7 Citations
Abstract
The efficiency of conversion of high-power laser radiation to an electric signal based on the optical rectification effect in nanographite films is studied experimentally. The amplitude of the signal is found to significantly depend on the size of the film, as well as on the length and arrangement of measuring electrodes. The maximal sensitivity of the photodetector (above 500 mV/MW at a wavelength of 1064 nm) consisting of the film with electrodes and operating without an external power supply and add-on components is shown to be achieved when the size of the film is comparable to the laser beam diameter. The sensitivity of the photodetector is studied under the condition when a nanosecond beam from a pulsed laser scans the surface of the film in two mutually perpendicular directions. The local sensitivity increases near the free ends of the photodetector. It is shown that the nanographite detector and a similar photodetector made of a polished silicon wafer have radically different parameters.
PACS numbers
85.60.GzPreview
Unable to display preview. Download preview PDF.
References
- 1.Measurement of Energy Parameters and Characteristics of Laser Radiation, Ed. by A. F. Kotyuk (Radio i Svyaz’, Moscow, 1981) [in Russian].Google Scholar
- 2.G. G. Ishanin, Radiation Detectors for Optical and Optoelectronic Devices (Mashinostroenie, Leningrad, 1986) [in Russian].Google Scholar
- 3.A. F. Gibson, C. B. Hatch, M. F. Kimmitt, et al., J. Phys. C 10, 905 (1977).CrossRefADSGoogle Scholar
- 4.S. S. Alimpiev, P. M. Valov, and I. D. Yaroshetskii, Pis’ma Zh. Tekh. Fiz. 4, 146 (1978) [Sov. Tech. Phys. Lett. 4, 60 (1978)].Google Scholar
- 5.S. M. Ryvkin and I. D. Yaroshetskii, in Problems of Modern Physics (Nauka, Leningrad, 1980), pp. 173–184 [in Russian].Google Scholar
- 6.J. F. Ward, Phys. Rev. 143, 569 (1966).CrossRefADSGoogle Scholar
- 7.B. N. Morozov and Yu. M. Aivazyan, Kvantovaya Élektron. (Moscow) 7, 5 (1980).Google Scholar
- 8.G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, Appl. Phys. Lett. 84, 4854 (2004).CrossRefADSGoogle Scholar
- 9.G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, Pis’ma Zh. Tekh. Fiz. 30(17), 88 (2004) [Tech. Phys. Lett. 30, 750 (2004)].Google Scholar
- 10.G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, Zh. Éksp. Teor. Fiz. 126, 1083 (2004) [JETP 99, 942 (2004)].Google Scholar
- 11.G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, et al., Pis’ma Zh. Tekh. Fiz. 31(3), 11 (2005) [Tech. Phys. Lett. 31, 94 (2005)].Google Scholar
- 12.G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, et al., Pis’ma Zh. Tekh. Fiz. 31(13), 50 (2005) [Tech. Phys. Lett. 31, 560 (2005)].Google Scholar
- 13.G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, et al., Prib. Tekh. Éksp., No. 4 (2005).Google Scholar
- 14.I. Yu. Pavlovskiĭ and A. N. Obraztsov, Prib. Tekh. Éksp., No. 1, 152 (1998).Google Scholar
- 15.A. N. Obraztsov, A. P. Volklov, A. I. Boronin, et al., Zh. Éksp. Teor. Fiz. 120, 970 (2001) [JETP 93, 846 (2001)].Google Scholar
- 16.A. N. Obraztsov, A. A. Zolotukhin, A. O. Ustinov, et al., Carbon 41, 836 (2003).CrossRefGoogle Scholar
- 17.G. M. Mikheev, D. I. Maleev, and T. N. Mogileva, Kvantovaya Élektron. (Moscow) 19, 45 (1992).Google Scholar