Skip to main content
Log in

Ground State of a Two-Sublattice Anisotropic Ferromagnet in a Magnetic Field

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The ground state of a classical two-sublattice ferromagnet with the noncollinear single-ion anisotropy axes of the sublattices and the antisymmetric and anisotropic symmetric exchanges between them has been investigated in a magnetic field applied along the hard magnetization directions in the crystal. The threshold relations for the parameters of the anisotropic interactions have been obtained, which determine the choice of the ground state among the three possible magnetic phases. Depending on the ground state type and the field direction, the transition between the phases is a first- or second-order phase transition. The antisymmetric exchange value above which the reorientation between the noncollinear phases ends with a second-order transition depends on the angle between the local easy axes and the single-ion anisotropy value. Field dependences of the magnetization and susceptibility for different ground states have been calculated. A comparison with the results of the magnetic measurements in the highly anisotropic PbMnBO4 ferromagnet has been made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature (London, U.K.) 426, 55 (2003).

    Article  ADS  Google Scholar 

  2. E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermit, S. Cariglio, J. M. Triskone, and P. Ghoser, Nature (London, U.K.) 452, 732 (2008).

    Article  ADS  Google Scholar 

  3. M. Muchizuki and N. Furukawa, Phys. Rev. B 80, 134416 (2009).

    Article  ADS  Google Scholar 

  4. C. Weingart, N. Spaldin, and E. Bousquet, Phys. Rev. B 86, 094413 (2012).

    Article  ADS  Google Scholar 

  5. E. Bousquet and A. Cano, J. Phys: Condens. Matter 28, 1 (2016).

    Google Scholar 

  6. S. V. Vonsovsky and E. A. Turov, J. Appl. Phys. 30, 98 (1959).

    Article  Google Scholar 

  7. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971; Wiley, New York, 1971).

  8. E. A. Turov, Physical Properties of Magnetically Ordered Crystals (Akad. Nauk SSSR, Moscow, 1963), p. 177 [in Russian].

    Google Scholar 

  9. A. Pankrats, K. Sablina, M. Eremin, A. Balaev, M. Kolkov, V. Tugarinov, and A. Bovina, J. Magn. Magn. Mater. 414, 82 (2016).

    Article  ADS  Google Scholar 

  10. H. Park and J. Barbier, Acta Crystallog., E 57, 82 (2001).

    Article  Google Scholar 

  11. H. Park, R. Lam, J. E. Greedan, and J. Barbier, Chem. Matter. 15, 1703 (2003).

    Article  Google Scholar 

  12. H.-J. Koo and M.-H. Whangbo, Solid State Commun. 149, 602 (2009).

    Article  ADS  Google Scholar 

  13. A. Pankrats, K. Sablina, D. Velikanov, A. Vorotynov, O. Bayukov, A. Eremin, M. Molokeev, S. Popkov, and A. Krasikov, J. Magn. Magn. Mater. 353, 23 (2014).

    Article  ADS  Google Scholar 

  14. A. Pankrats, M. Kolkov, S. Martynov, S. Popkov, A. Krasikov, A. Balaev, and M. Gorev, J. Magn. Magn. Mater. 471, 416 (2019).

    Article  ADS  Google Scholar 

  15. J. Head, P. Manuel, F. Orlandi, M. Jeong, M. R. Lees, R. Lu, and C. Greaves, Chem. Mater. 32, 10184 (2020).

    Article  Google Scholar 

  16. M. M. Murshed, A. Rusen, R. X. Fisher, and T. M. Gesing, Mater. Res. Bull. 47, 1323 (2012).

    Article  Google Scholar 

  17. H. Xiang, Y. Tang, S. Chang, and Z. He, J. Phys.: Condens. Matter 28, 276003 (2016).

    ADS  Google Scholar 

  18. A. Pankrats, M. Kolkov, A. Balaev, A. Shabanov, and A. Vasiliev, J. Magn. Magn. Mater. 497, 165997 (2020).

    Article  Google Scholar 

  19. S. N. Martynov, Phys. Solid State 62, 1165 (2020).

    Article  Google Scholar 

  20. R. Bozorth, Phys. Rev. Lett. 1362 (1958).

  21. T. Moriya, Phys. Rev. 117, 635 (1960).

    Article  ADS  Google Scholar 

  22. E. F. Bertaut, in Magnetism, Collection of Articles (Academic, New York, 1963), Vol. 3.

    Google Scholar 

  23. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).

    Article  ADS  Google Scholar 

  24. T. Moriya, Phys. Rev. 120, 91 (1960).

    Article  ADS  Google Scholar 

  25. T. A. Kaplan, Z. Phys. B 49, 313 (1983).

    Article  ADS  Google Scholar 

  26. L. Shekhtman, O. Entin-Wohlman, and A. Aharony, Phys. Rev. Lett. 69, 836 (1992).

    Article  ADS  Google Scholar 

  27. L. Shekhtman, A. Aharony, and O. Entin-Wohlman, Phys. Rev. B 47, 174 (1993).

    Article  ADS  Google Scholar 

  28. A. Zheludev, S. Maslov, I. Tsukada, I. Zaliznyak, L. P. Regnault, T. Masuda, K. Uchinokura, R. Erwin, and G. Shurane, Phys. Rev. Lett. 81, 5410 (1998).

    Article  ADS  Google Scholar 

  29. A. S. Moskvin and I. G. Bostrem, Sov. Phys. Solid State 19, 946 (1977).

    Google Scholar 

  30. E. A. Turov, A. V. Kolchanov, V. V. Men’shenin, I. F. Mirsaev, and V. V. Nikolaev, Symmetry and Physical Properties of Antiferromagnets (Fizmatlit, Moscow, 2001), p. 103 [in RUssian].

    Google Scholar 

  31. L. E. Gonchar’ and A. E. Nikiforov, Phys. Solid State 42, 1070 (2000).

    Article  ADS  Google Scholar 

  32. V. Skumryev, F. Ott, J. M. D. Coey, A. Anane, J.‑P. Renard, L. Pinsard-Gandart, and A. Revcolevschi, Eur. Phys. J. B 11, 401 (1999).

    ADS  Google Scholar 

  33. F. Moussa, M. Hennion, J. Rodrigues-Carvajal, H. Moudden, L. Pinsard, and A. Revcolevschi, Phys. Rev. B 54, 15149 (1996).

    Article  ADS  Google Scholar 

  34. A. Pimenov, M. Biberacher, D. Ivannikov, A. Loidl, V. Yu. Ivanov, A. A. Mukhin, and A. M. Balbashov, Phys. Rev. B 62, 5685 (2000).

    Article  ADS  Google Scholar 

  35. D. Talbayev, L. Mihaly, and J. Zhou, Phys. Rev. Lett. 93, 017202 (2004).

    Article  ADS  Google Scholar 

  36. L. Mihaly, D. Talbayev, L. Kiss, J. Zhou, T. Feher, and A. Janossy, Phys. Rev. B 69, 024414 (2004).

    Article  ADS  Google Scholar 

  37. L. E. Gonchar’, A. E. Nikiforov, and S. E. Popov, J. Exp. Theor. Phys. 91, 1221 (2000).

    Article  ADS  Google Scholar 

  38. L. E. Gonchar’, Phys. Solid State 61, 728 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to A.I. Pankrats for useful discussion.

Funding

This study was supported by the Russian Foundation for Basic Research and the Krasnoyarsk Territorial Foundation for Support of Scientific and R&D Activities, project no. 20-42-240006 “Synthesis and Study of Pb2+- and Bi3+-Containing Oxide Single Crystals with Partial Substitution in One of the Subsystems: Magnetic Structures and Magnetodielectric Effect.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Martynov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynov, S.N. Ground State of a Two-Sublattice Anisotropic Ferromagnet in a Magnetic Field. Phys. Solid State 63, 1253–1261 (2021). https://doi.org/10.1134/S1063783421080199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421080199

Keywords:

Navigation