Skip to main content
Log in

Features of Relaxation of the Remanent Magnetization of Antiferromagnetic Nanoparticles by the Example of Ferrihydrite

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The relaxation of the remanent magnetization of antiferromagnetically ordered ferrihydrite nanoparticles at the exchange bias effect implemented in these systems has been investigated. The magnetization relaxation depends logarithmically on time, which is typical of the thermally activated hoppings of particle magnetic moments through the potential barriers caused by the magnetic anisotropy. The barrier energy obtained by processing of the remanent magnetization relaxation data under the field cooling conditions significantly exceeds the barrier energy under standard (zero field cooling) conditions. The observed difference points out the possibility of using the remanent magnetization relaxation to analyze the mechanisms responsible for the exchange bias effect in antiferromagnetic nanoparticles and measure the parameters of the exchange coupling of magnetic subsystems in such objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. L. Néel, C. R. Acad. Sci. (Paris) 252, 4075 (1961).

    Google Scholar 

  2. S. Mørup, D. E. Madsen, C. Fradsen, C. R. H. Bahl, and M. F. Hansen, J. Phys.: Condens. Matter 19, 213202 (2007).

    ADS  Google Scholar 

  3. Yu. L. Raikher and V. I. Stepanov, J. Exp. Theor. Phys. 107, 435 (2008).

    ADS  Google Scholar 

  4. N. J. O. Silva, V. S. Amaral, and L. D. Carlos, Phys. Rev. B 71, 184408 (2005).

    ADS  Google Scholar 

  5. M. S. Seehra and A. Punnoose, Phys. Rev. B 64, 132410 (2001).

    ADS  Google Scholar 

  6. C. Rani and S. D. Tiwari, J. Magn. Magn. Mater. 385, 272 (2015).

    ADS  Google Scholar 

  7. J. G. E. Harris, J. E. Grimaldi, D. D. Awschalom, A. Cholero, and D. Loss, Phys. Rev. B 60, 3453 (1999).

    ADS  Google Scholar 

  8. C. Gilles, P. Bonville, H. Rakoto, J. M. Broto, K. K. W. Wong, and S. Mann, J. Magn. Magn. Mater. 241, 430 (2002).

    ADS  Google Scholar 

  9. A. A. Lepeshev, I. V. Karpov, A. V. Ushakov, D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, D. A. Velikanov, and M. I. Petrov, J. Supercond. Nov. Magn. 30, 931 (2017).

    Google Scholar 

  10. D. A. Balaev, A. A. Dubrovskiy, A. A. Krasikov, S. I. Popkov, A. D. Balaev, K. A. Shaikhutdinov, V. L. Kirillov, and O. N. Mart’yanov, Phys. Solid State 59, 1547 (2017).

    ADS  Google Scholar 

  11. D. A. Balaev, A. A. Dubrovskii, A. A. Krasikov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and E. D. Khilazheva, JETP Lett. 98, 139 (2013).

    ADS  Google Scholar 

  12. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskii, S. V. Semenov, O. A. Bayukov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and L. A. Ishchenko, J. Exp. Theor. Phys. 119, 479 (2014).

    Google Scholar 

  13. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. I. Popkov, S. V. Stolyar, O. A. Bayukov, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, J. Magn. Magn. Mater. 410, 71 (2016).

    Google Scholar 

  14. S. I. Popkov, A. A. Krasikov, D. A. Velikanov, V. L. Kirillov, O. N. Martyanov, and D. A. Balaev, J. Magn. Magn. Mater. 483, 21 (2019).

    ADS  Google Scholar 

  15. S. I. Popkov, A. A. Krasikov, A. A. Dubrovskiy, M. N. Volochaev, V. L. Kirillov, O. N. Martyanov, and D. A. Balaev, J. Appl. Phys. 126, 103904 (2019).

    ADS  Google Scholar 

  16. C. Diaz-Guerra, M. Vila, and J. Piqueras, Appl. Phys. Lett. 96, 193105 (2010).

    ADS  Google Scholar 

  17. D. A. Balaev, A. A. Krasikov, D. A. Velikanov, S. I. Popkov, N. V. Dubynin, S. V. Stolyar, V. P. Ladygina, and R. N. Yaroslavtsev, Phys. Solid State 60, 1973 (2018).

    ADS  Google Scholar 

  18. R. H. Kodama and A. E. Berkowitz, Phys. Rev. B 59, 6321 (1999).

    ADS  Google Scholar 

  19. Yu. A. Koksharov, S. P. Gubin, I. D. Kosobudsky, G. Yu. Yurkov, D. A. Pankratov, L. A. Ponomarenko, M. G. Mikheev, M. Beltran, Y. Khodorkovsky, and A. M. Tishin, Phys. Rev. B 63, 012407 (2000).

    ADS  Google Scholar 

  20. E. Winkler, R. D. Zysler, M. Vasquez Mansilla, and D. Fiorani, Phys. Rev. B 72, 132409 (2005).

    ADS  Google Scholar 

  21. M. Tadic, D. Nikolic, M. Panjan, and G. R. Blake, J. Alloys Compd. 647, 1061 (2015).

    Google Scholar 

  22. S. V. Stolyar, D. A. Balaev, V. P. Ladygina, A. I. Pankrats, R. N. Yaroslavtsev, D. A. Velikanov, and R. S. Iskhakov, JETP Lett. 111, 183 (2020).

  23. M. Tadić, M. Panjan, D. Marković, I. Milošević, and V. Spasojević, J. Alloys Compd. 509, 7134 (2011).

    Google Scholar 

  24. A. S. Kamzin, A. A. Valiullin, V. G. Semenov, H. Das, and N. Wakiya, Phys. Solid State 61, 1113 (2019).

    ADS  Google Scholar 

  25. N. J. O. Silva, A. Millan, F. Palacio, E. Kampert, U. Zeitler, and V. S. Amaral, Phys. Rev. B 79, 104405 (2009).

    ADS  Google Scholar 

  26. W. P. Meiklejohn and C. P. Bean, Phys. Rev. 102, 1413 (1956).

    ADS  Google Scholar 

  27. J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999).

    ADS  Google Scholar 

  28. S. Giri, M. Patra, and S. Majumdar, J. Phys.: Condens. Matter 23, 073201 (2011).

    ADS  Google Scholar 

  29. J. Noguées, J. Sort, V. Langlais, V. Skumryev, S. Suriñach, J. S. Muñoz, and M. D. Baró, Phys. Rep. 422, 65 (2005).

    ADS  Google Scholar 

  30. S. A. Makhlouf, F. T. Parker, F. E. Spada, and A. E. Berkowitz, J. Appl. Phys. 81, 5561 (1997).

    ADS  Google Scholar 

  31. S. A. Makhlouf, H. Al-Attar, and R. H. Kodama, Solid State Commun. 145, 1 (2008).

    ADS  Google Scholar 

  32. M. S. Seehra and A. Punnoose, Solid State Commun. 128, 299 (2003).

    ADS  Google Scholar 

  33. A. Punnoose and M. S. Seehra, J. Appl. Phys. 91, 7766 (2002).

    ADS  Google Scholar 

  34. A. Punnoose, H. Magnone, M. S. Seehra, and J. Bonevich, Phys. Rev. B 64, 174420 (2001).

    ADS  Google Scholar 

  35. A. E. Bianchi, S. J. Stewart, R. D. Zysler, and G. Punte, J. Appl. Phys. 112, 083904 (2012).

    ADS  Google Scholar 

  36. S. A. Makhlouf, F. T. Parker, and A. E. Berkowitz, Phys. Rev. B 55, R14717 (1997).

    ADS  Google Scholar 

  37. A. Punnoose, T. Phanthavady, M. S. Seehra, N. Shah, and G. P. Huffman, Phys. Rev. B 69, 054425 (2004).

    ADS  Google Scholar 

  38. T. S. Berquó, J. J. Erbs, A. Lindquist, R. L. Penn, and S. K. Banerjee, J. Phys.: Condens. Matter 21, 176005 (2009).

    ADS  Google Scholar 

  39. M. S. Seehra, V. Singh, X. Song, S. Bali, and E. M. Eyring, J. Phys. Chem. Solids 71, 1362 (2010).

    ADS  Google Scholar 

  40. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskii, S. V. Semenov, S. I. Popkov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, Phys. Solid State 58, 287 (2016).

    ADS  Google Scholar 

  41. N. J. O. Silva, V. S. Amaral, A. Urtizberea, R. Bustamante, A. Millán, F. Palacio, E. Kampert, U. Zeitler, S. de Brion, O. Iglesias, and A. Labarta, Phys. Rev. B 84, 104427 (2011).

    ADS  Google Scholar 

  42. D. A. Balaev, A. A. Krasikov, A. A. Dubrovskiy, S. I. Popkov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, and R. N. Yaroslavtsev, J. Appl. Phys. 120, 183903 (2016).

    ADS  Google Scholar 

  43. S. V. Stolyar, D. A. Balaev, V. P. Ladygina, A. A. Dubrovskiy, A. A. Krasikov, S. I. Popkov, O. A. Bayukov, Yu. V. Knyazev, R. N. Yaroslavtsev, M. N. Volochaev, R. S. Iskhakov, K. G. Dobretsov, E. V. Morozov, O. V. Falaleev, E. V. Inzhevatkin, O. A. Kolenchukova, and I. A. Chizhova, J. Supercond. Nov. Magn. 31, 2297 (2018).

    Google Scholar 

  44. S. V. Stolyar, R. N. Yaroslavtsev, R. S. Iskhakov, O. A. Bayukov, D. A. Balaev, A. A. Dubrovskii, A. A. Krasikov, V. P. Ladygina, A. M. Vorotynov, and M. N. Volochaev, Phys. Solid State 59, 555 (2017).

    ADS  Google Scholar 

  45. Yu. L. Raikher, V. I. Stepanov, S. V. Stolyar, V. P. Ladygina, D. A. Balaev, L. A. Ishchenko, and M. Balashoyu, Phys. Solid State 52, 298 (2010).

    ADS  Google Scholar 

  46. S. V. Stolyar, O. A. Bayukov, V. P. Ladygina, R. S. Iskhakov, L. A. Ishchenko, V. Yu. Yakovchuk, K. G. Dobretsov, A. I. Pozdnyakov, and O. E. Piksina, Phys. Solid State 53, 100 (2011).

    ADS  Google Scholar 

  47. L. Anghel, M. Balasoiu, L. A. Ishchenko, S. V. Stolyar, T. S. Kurkin, A. V. Rogachev, A. I. Kuklin, Y. S. Kovalev, Y. L. Raikher, R. S. Iskhakov, and G. Duca, J. Phys.: Conf. Ser. 351, 12005 (2012).

    Google Scholar 

  48. D. A. Balaev, A. A. Krasikov, S. V. Stolyar, R. S. Iskhakov, V. P. Ladygina, R. N. Yaroslavtsev, O. A. Bayukov, A. M. Vorotynov, M. N. Volochaev, and A. A. Dubrovskii, Phys. Solid State 58, 1782 (2016).

    ADS  Google Scholar 

  49. A. D. Balaev, Yu. V. Boyarshinov, M. M. Karpenko, and B. P. Khrustalev, Prib. Tekh. Eksp., No. 3, 167 (1985).

  50. A. P. Malozemoff, J. Appl. Phys. 63, 3874 (1988).

    ADS  Google Scholar 

  51. J. Tejada, X. X. Zhang, and E. M. Chudnovsky, Phys. Rev. B 47, 14977 (1993).

    ADS  Google Scholar 

  52. R. Prozorov, Y. Yeshurun, T. Prozorov, and A. Gedanken, Phys. Rev. B 59, 6956 (1999).

    ADS  Google Scholar 

  53. J. Tejada and X. X. Zhang, J. Phys.: Condens. Matter 6, 263 (1994).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaev, D.A., Krasikov, A.A., Balaev, A.D. et al. Features of Relaxation of the Remanent Magnetization of Antiferromagnetic Nanoparticles by the Example of Ferrihydrite. Phys. Solid State 62, 1172–1178 (2020). https://doi.org/10.1134/S1063783420070033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420070033

Keywords:

Navigation