Skip to main content
Log in

Phase Composition, Microstructure, and Electroconductivity of HfO2–R2O3 Solid Electrolytes (R = Sc, Y, Ho, Er, Tm, Yb, and Lu)

  • LATTICE DYNAMICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of the addition of 11 mol % R2O3 (R = Sc, Y, Ho, Er, Tm, Yb, Lu) on the phase and elemental composition, microstructure, and electroconductivity of hafnium oxide was studied. Samples of HfO2 doped with any of these elements, except for Sc, represent solid solutions with a cubic fluorite-like structure. The HfO2–Sc2O3 sample consists of the Hf7Sc2O17 phase with a fluorite-like structure with rhombohedral distortions that undergoes a reversible transformation into a cubic structure at a temperature of ~760°C. The dopant’s nature has almost no effect on the microstructure of HfO2–R2O3 ceramics; all synthesized samples are large-grain ceramics with a grain size as high as 10 μm. We show that the grain bulk conductivity is the limiting factor determining the conductivity of the HfO2–R2O3 samples. The HfO2–Tm2O3 and HfO2–Yb2O3 compositions, in which high conductivity is combined with structural stability, are the most promising materials as solid oxide electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. R. K. Nahar, V. Singh, and A. Sharma, J. Mater. Sci. Electron. 18, 615 (2007).

    Article  Google Scholar 

  2. G. D. Wilk, R. M. Wallace, and J. M. Anthony, J. Appl. Phys. 87, 484 (2000).

    Article  ADS  Google Scholar 

  3. K. J. Hubbard and D. G. Schlom, J. Mater. Res. 11, 2757 (1996).

    Article  ADS  Google Scholar 

  4. J. McPherson, J. Y. Kim, A. Shanware, and H. Mogul, Appl. Phys. Lett. 82, 2121 (2003).

    Article  ADS  Google Scholar 

  5. J. A. Valdez, I. O. Usov, J. Won, M. Tang, R. M. Dickerson, G. D. Jarvinen, and K. E. Sickafus, J. Nucl. Mater. 393, 126 (2009).

    Article  ADS  Google Scholar 

  6. M. Yashima, H. Takahashi, K. Ohtake, T. Hirose, M. Kakihana, H. Arashi, Y. Ikuma, Y. Suzuki, and M. Yoshimura, J. Phys. Chem. Solids 57, 289 (1996).

    Article  ADS  Google Scholar 

  7. C. L. Platt, B. Dieny, and A. E. Berkowitz, Appl. Phys. Lett. 69, 2291 (1996).

    Article  ADS  Google Scholar 

  8. M. J. Esplandiu, E. M. Patrito, and V. A. Macagno, Electrochim. Acta 42, 1315 (1997).

    Article  Google Scholar 

  9. M. F. Trubelja and V. S. Stubican, Solid State Ionics 49, 89 (1991).

    Article  Google Scholar 

  10. Y.-D. Kim, J.-Y. Yang, J.-I. Lee, M. Saqib, J.-S. Shin, M. Shin, J. H. Kim, H.-T. Lim, and J.-Y. Park, J. Alloys Compd. 779, 121 (2019).

    Article  Google Scholar 

  11. N. Izu, T. Itoh, W. Shin, I. Matsubara, and N. Murayama, Sens. Actuators, B 123, 407 (2007).

    Article  Google Scholar 

  12. M. Filipescu, N. Scarisoreanu, V. Craciun, B. Mitu, A. Purice, A. Moldovan, V. Ion, O. Toma, and M. Dinescu, Appl. Surf. Sci. 253, 8184 (2007).

    Article  ADS  Google Scholar 

  13. A. A. Demkov, O. Sharia, X. Luo, G. Bersuker, and J. Robertson, Microelectron. Eng. 86, 1763 (2009).

    Article  Google Scholar 

  14. M. Kirm, J. Aarik, M. Jurgens, and I. Sildos, Nucl. Instrum. Methods Phys. Res., Sect. A 537, 251 (2005).

    Google Scholar 

  15. C. LeLuyer, M. Villanueva-Ibanez, A. Pillonnet, and C. Dujardin, J. Phys. Chem. A 122, 10152 (2008).

    Article  Google Scholar 

  16. V. B. Glushkova and M. V. Kravchinskaya, Ceram. Int. 11, 56 (1985).

    Article  Google Scholar 

  17. M. R. Winter and D. R. Clarke, Acta Mater. 54, 5051 (2006).

    Article  Google Scholar 

  18. E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, and I. Talmy, Electrochem. Soc. Interface 16, 30 (2007).

    Google Scholar 

  19. C. T. Lynch, High Temperature Oxides (Academic, New York, 1970), p. 193.

    Google Scholar 

  20. E. R. Andrievskaya, J. Eur. Ceram. Soc. 28, 2363 (2008).

    Article  Google Scholar 

  21. M. Mann and J. Kolis, J. Cryst. Growth 312, 461 (2010).

    Article  ADS  Google Scholar 

  22. M. Yashima, K. Ohtake, M. Kakihana, H. Arashiand, and M. Yoshimura, J. Phys. Chem. Solids 57, 17 (1996).

    Article  ADS  Google Scholar 

  23. Y. Tabira, R. L. Withers, J. C. Barry, and L. Elcoro, J. Solid State Chem. 159, 121 (2001).

    Article  ADS  Google Scholar 

  24. S. V. Zhidovinova, A. G. Kotlyar, V. N. Strekalovskii, and S. F. Pal’guev, Tr. Inst. Elektrokhim. UNTs AN SSSR 18, 148 (1972).

    Google Scholar 

  25. A. Chen, J. R. Smith, K. L. Duncan, R. T. DeHoff, K. S. Jones, and E. D. Wachsman, J. Electrochem. Soc. 157, B1624 (2010).

    Article  Google Scholar 

  26. H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, and H. Suzuki, Solid State Ionics 61, 65 (1993).

    Article  Google Scholar 

  27. C. D. Savaniu, J. Canales-Vazquez, and J. T. S. Irvine, J. Mater. Chem. 15, 598 (2005).

    Article  Google Scholar 

  28. K. D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, and J. Maier, Solid State Ionics 145, 295 (2001).

    Article  Google Scholar 

  29. T. H. Wan, M. Saccoccio, C. Chen, and F. Ciucci, Electrochim. Acta 184, 483 (2015).

    Article  Google Scholar 

  30. V. Vashook, E. Girdauskaite, J. Zosel, T.-L. Wen, H. Ullmann, and U. Guth, Solid State Ionics 177, 1163 (2006).

    Article  Google Scholar 

  31. Z. S. Volchenkova and D. S. Zubankova, Study of Molten Salt and Oxide Systems (Akad. Nauk SSSR UNTs, Sverdlovsk, 1975) [in Russian].

  32. P. Simoncic and A. Navrotsky, J. Mater. Sci. 22, 876 (2007).

    Google Scholar 

  33. A. L. Gavrilyuk, D. A. Osinkin, and D. I. Bronin, Russ. J. Electrochem. 53, 575 (2017).

    Article  Google Scholar 

  34. A. N. Vlasov, Elektrokhimiya 25, 699 (1989).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

SEM and XRD measurements were performed using the facilities of the Shared Access Centre “Composition of Compounds” Institute of High-Temperature Electrochemistry, Ural Branch Russian Academy of Sciences. We are grateful to A.A. Pankratov for SEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Meshcherskikh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meshcherskikh, A.N., Kolchugin, A.A., Antonov, B.D. et al. Phase Composition, Microstructure, and Electroconductivity of HfO2–R2O3 Solid Electrolytes (R = Sc, Y, Ho, Er, Tm, Yb, and Lu). Phys. Solid State 62, 188–195 (2020). https://doi.org/10.1134/S1063783420010229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010229

Keywords:

Navigation