Physics of the Solid State

, Volume 61, Issue 11, pp 2041–2054 | Cite as

Dynamic Rearrangements of a Three-Dimensional Topological Structure of a Moving Domain Wall in Magnetic Film in the Presence of Random Perturbations

  • V. V. ZverevEmail author
  • E. Zh. Baikenov
  • I. M. Izmozherov


Using three-dimensional micromagnetic simulation, the dynamic processes occurring in a domain wall (DW) that moves under the influence of a constant magnetic field in a magnetically soft uniaxial film with planar anisotropy are studied. It is shown that the general picture of the dynamics of topological transformations taking place in DWs can significantly vary with the introduction of perturbing factors that randomly depend on the coordinates or time (spatially heterogeneous anisotropy; a magnetic field fluctuating in time). Moreover, the characteristic configurations of a vector magnetization field near the intrafilm vortex cores and singular (Bloch) points preserve their shape. The dependences of the energy and DW shifts on the time are determined for a wide range of film thickness values, temperatures, and magnetic field intensities. Imaging techniques based on calculating two types of topological charges are used when analyzing magnetization configurations.


magnetic films micromagnetism domain walls 



This work was performed within the State Assignment from the Ministry of Education and Science of the Russian Federation (topic Alloys) with financial support in accordance with order no. 211 of the Russian Government (contract no. 02.A03.21.0006).


The authors declare that they have no conflicts of interest.


  1. 1.
    N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    A. E. LaBonte, J. Appl. Phys. 40, 2450 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    A. Hubert, Phys. Status Solidi 32, 519 (1969).CrossRefGoogle Scholar
  4. 4.
    N. Trunk, M. Redjdal, A. Kakay, M. F. Ruane, and F. B. Humphrey, J. Appl. Phys. 89, 7606 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    S. W. Yuan and H. N. Bertram, Phys. Rev. B 44, 12395 (1991).ADSCrossRefGoogle Scholar
  6. 6.
    B. N. Filippov, L. G. Korzunin, and F. A. Kassan-Ogly, Phys. Rev. B 64, 104412 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    B. N. Filippov and L. G. Korzunin, J. Exp. Theor. Phys. 94, 315 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    B. N. Filippov, J. Low Temp. Phys. 28, 707 (2002).CrossRefGoogle Scholar
  9. 9.
    B. N. Filippov, L. G. Korzunin, and F. A. Kassan-Ogly, Solid State Commun. 129, 395 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    B. N. Filippov and F. A. Kassan-Ogly, Phys. D (Amsterdam, Neth.) 237, 1151 (2008).Google Scholar
  11. 11.
    L. G. Korzunin, M. N. Dubovik, and B. N. Filippov, Phys. Solid State 52, 2099 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    B. N. Filippov, Phys. Solid State 54, 2407 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    A. M. Kosevich, V. A. Ivanov, and A. S. Kovalev, Nonlinear Waves of Magnetization. Dynamic and Topological Solitons (Naukova Dumka, Kiev, 1988) [in Russian].Google Scholar
  14. 14.
    N. A. Usov and S. E. Peschany, J. Magn. Magn. Mater. 118, L290 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    A. Aharoni, J. Appl. Phys. 68, 2892 (1990).ADSCrossRefGoogle Scholar
  16. 16.
    K. L. Metlov, arXiv: cond-mat/0012146v1 (2000).Google Scholar
  17. 17.
    K. Yu. Guslienko, V. Novosad, Y. Otani, H. Shima, and K. Fukamichi, Appl. Phys. Lett. 78, 3848 (2001).ADSCrossRefGoogle Scholar
  18. 18.
    K. Yu. Guslienko and K. L. Metlov, Phys. Rev. B 63, 100403 (2001).ADSCrossRefGoogle Scholar
  19. 19.
    N. Locatelli, A. E. Ekomasov, A. V. Khvalkovskiy, Sh. A. Azamatov, K. A. Zvezdin, J. Grollier, E. G. Eko-masov, and V. Cros, Appl. Phys. Lett. 102, 062401 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    S. V. Stepanov, A. E. Ekomasov, K. A. Zvezdin, and E. G. Ekomasov, Phys. Solid State 60, 1055 (2018).ADSCrossRefGoogle Scholar
  21. 21.
    A. Thiaville, J. M. Garsia, R. Dittrich, J. Miltat, and T. Schrefl, Phys. Rev. B 67, 094410 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    W. Döring, J. Appl. Phys. 39, 1006 (1968).ADSCrossRefGoogle Scholar
  23. 23.
    Q. F. Xiao, J. Rudge, B. C. Choi, Y. K. Hong, and G. Donohoe, Appl. Phys. Lett. 89, 262507 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    R. Hertel, S. Gliga, M. Fähnle, and C. M. Schneider, Phys. Rev. Lett. 98, 117201 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    Ki-Suk Lee, and K. Yu. Guslienko, Jun-Young Lee, and Sang-Koog Kim, Phys. Rev. B 76, 174410 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    K. Yu. Guslienko, Ki-Suk Lee, and Sang-Koog Kim, Phys. Rev. Lett. 100, 027203 (2008).ADSCrossRefGoogle Scholar
  27. 27.
    Ki-Suk Lee, Sang-Koog Kim, Young-Sang Yu, Youn-Seok Choi, K. Yu. Guslienko, H. Jung, and P. Fisher, Phys. Rev. Lett. 101, 267206 (2008).Google Scholar
  28. 28.
    R. Hertel and C. M. Schneider, Phys. Rev. Lett. 97, 177202 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    Ki-Suk Lee, Byong-Woo Kang, Young-Sang Yu, and Sang-Koog Kim, Appl. Phys. Lett. 85, 1568 (2004).ADSCrossRefGoogle Scholar
  30. 30.
    M. Noske, H. Stoll, M. Fähnle, R. Hertel, and G. Schütz, Phys. Rev. B 91, 014414 (2015).ADSCrossRefGoogle Scholar
  31. 31.
    M. Noske, H. Stoll, M. Fähnle, A. Gangwar, G. Woltersdorf, A. Slavin, M. Weigand, G. Dieterle, J. Förster, C. H. Back, and G. Schütz, J. Appl. Phys. 119, 173901 (2016).ADSCrossRefGoogle Scholar
  32. 32.
    M. Noske, H. Stoll, M. Fähnle, A. Gangwar, G. Woltersdorf, A. Slavin, M. Weigand, G. Dieterle, J. Förster, C. H. Back, and G. Schütz, Phys. Rev. Lett. 117, 037208 (2016).ADSCrossRefGoogle Scholar
  33. 33.
    V. V. Zverev and B. N. Filippov, Phys. Solid State 58, 485 (2016).ADSCrossRefGoogle Scholar
  34. 34.
    V. V. Zverev, I. M. Izmozherov, and B. N. Filippov, Phys. Solid State 60, 299 (2018).ADSCrossRefGoogle Scholar
  35. 35.
    Yu. L. Klimontovich, Turbulent Motion and Chaos Structure (Nauka, Moscow, 1990) [in Russian].Google Scholar
  36. 36.
    W. F. Brown, Phys. Rev. 130, 1677 (1963).ADSCrossRefGoogle Scholar
  37. 37.
    J. L. Garsía-Palacios and F. J. Lázaro, Phys. Rev. B 58, 14937 (1998).ADSCrossRefGoogle Scholar
  38. 38.
    A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, and B. van Waeyenberge, AIP Adv. 4, 107133 (2014).ADSCrossRefGoogle Scholar
  39. 39.
    J. Leliaert, M. Dvornik, J. Mulkers, J. De Clercq, M. V. Milošević, and B. van Waeyenberge, J. Phys. D 51, 123002 (2018).ADSCrossRefGoogle Scholar
  40. 40.
    G. S. Abo, Yang-Ki Hong, Jihoon Park, Jaejin Lee, Woncheol Lee, and Byoung-Chul Choi, IEEE Trans. Magn. 49, 4937 (2013).ADSCrossRefGoogle Scholar
  41. 41.
    A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials (Elsevier, Amsterdam, 1979).Google Scholar
  42. 42.
    B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry (Nauka, Moscow, 1979) [in Russian].zbMATHGoogle Scholar
  43. 43.
    A. A. Thiele, Phys. Rev. Lett. 30, 230 (1973).ADSCrossRefGoogle Scholar
  44. 44.
    S. Komineas and N. Papanicolaou, Phys. D (Amsterdam, Neth.) 99, 81 (1996).Google Scholar
  45. 45.
    E. F. Mishenko and N. Kh. Rozov, Small-Parameter Differential Equations and Relaxation Oscillations (Nauka, Moscow, 1975) [in Russian].Google Scholar
  46. 46.
    J. Miguel, J. Sánchez-Barriga, D. Bayer, J. Kurde, B. Heitkamp, M. Plantek, F. Kronast, M. Aeschlimann, H. A. Dürr, and W. Kuch, J. Phys.: Condens. Matter 21, 496001 (2009).ADSGoogle Scholar
  47. 47.
    K. Kuepper, M. Buess, J. Raabe, C. Quitmann, and J. Fassbender, Phys. Rev. Lett. 99, 167202 (2007).ADSCrossRefGoogle Scholar
  48. 48.
    M. N. Dubovik, V. V. Zverev, and B. N. Filippov, J. Exp. Theor. Phys. 123, 108 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Zverev
    • 1
    • 2
    Email author
  • E. Zh. Baikenov
    • 1
  • I. M. Izmozherov
    • 1
    • 2
  1. 1.Ural Federal UniversityYekaterinburgRussia
  2. 2.Mikheev Institute of Metal Physics, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations