Physics of the Solid State

, Volume 61, Issue 11, pp 2160–2166 | Cite as

Excitation of Soliton-Type Waves in Crystals of the A3B Stoichiometry

  • P. V. ZakharovEmail author
  • M. D. Starostenkov
  • E. A. Korznikova
  • A. M. Eremin
  • I. S. Lutsenko
  • S. V. Dmitriev


Using the method of molecular dynamics and taking Ni3Al and Pt3Al as examples, crystals of the A3B composition are considered for the possibility of excitation of soliton-type waves in them. The potentials obtained by the embedded-atom method were used to describe interatomic interactions. It is shown that the harmonic external stimulus can excite waves of the soliton type in a Pt3Al crystal, but not in Ni3Al. Such compression–expansion waves are generated because of excitation of discrete breathers with soft nonlinearity that cannot exist in a Ni3Al crystal near the affected region. The detected waves are capable of propagating to thousands of nanometers along the Pt3Al crystal without losses of integrity and speed. The shape of the obtained wave corresponds to the kink solution of the sine-Gordon equation. The aggregate amount of energy transferred by a wave is determined by the number of rows of atoms involved in fluctuations; this may involve dozens and hundreds of electron volts.


discrete breather soliton solitary wave method of molecular dynamics nonlinearity lattice vibrations 



P.V.Z., M.D.S., A.M.E., and I.S.L. are grateful to Russian Foundation for Basic Research and Altai Krai Government for the financial support within the research project no. 18-42-220002 r_a (acquiring baseline data, article writing, and preparation of illustration materials). E.A.K. acknowledges the financial support from Grant of President of Russian Federation for State Support of Young Russian Scientists no. MD-3639.2019.2 (discussion of the results and drawing the conclusions).


The authors declare that they have no conflicts of interest.


  1. 1.
    W. P. Su, J. R. Schrieffer, and A. J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).ADSCrossRefGoogle Scholar
  2. 2.
    E. Luz, V. Lutsky, E. Granot, and B. A. Malomed, Sci. Rep. 9, 4483 (2019).ADSCrossRefGoogle Scholar
  3. 3.
    Z. Lan, Appl. Math. Lett. 94, 126 (2019).MathSciNetCrossRefGoogle Scholar
  4. 4.
    N. Tomita and A. Takahashi, Phys. Rev. B 99, 035203 (2019).ADSCrossRefGoogle Scholar
  5. 5.
    M. G. Arabi, D. V. Sogut, A. Khosronejad, and A. C. Yalciner, Coast. Eng. 147, 43 (2019).CrossRefGoogle Scholar
  6. 6.
    Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Elsevier, Amsterdam, 2003).Google Scholar
  7. 7.
    F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Phys. Rep. 463, 1 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, Phys. Rev. E 66, 5 (2002).CrossRefGoogle Scholar
  9. 9.
    A. S. Raja, A. S. Voloshin, and H. Guo, Nat. Commun. 10, 680 (2019).ADSCrossRefGoogle Scholar
  10. 10.
    O. V. Rudenko and C. M. Hedberg, Wave Motion 89, 104 (2019).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. N. Bugay and V. A. Khalyapin, Commun. Nonlin. Sci. Numer. Simul. 75, 270 (2019).CrossRefGoogle Scholar
  12. 12.
    S. G. Psakh’e, K. P. Zol’nikov, R. I. Kadyrov, G. E. Rudenskii, Yu. P. Sharkeev, and V. M. Kuznetsov, Tech. Phys. Lett. 25, 209 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Groza, P. G. Litovchenko, M. I. Starchik, V. I. Khivrych, G. G. Shmatko, and V. I. Varnina, Nucl. Phys. At. Energy 11, 66 (2010).Google Scholar
  14. 14.
    O. V. Bachurina, R. T. Murzaev, A. S. Semenov, E. A. Korznikova, and S. V. Dmitriev, Phys. Solid State 60, 989 (2018).ADSCrossRefGoogle Scholar
  15. 15.
    A. S. Semenov, Yu. V. Bebikhov, and A. A. Kistanov, Pis’ma Mater., No. 7, 77 (2017).Google Scholar
  16. 16.
    A. A. Kistanov, A. S. Semenov, and S. V. Dmitriev, J. Exp. Theor. Phys. 119, 766 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    A. A. Kistanov and S. V. Dmitriev, Tech. Phys. Lett. 39, 618 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    A. Shelkan, M. Klopov, and V. Hizhnyakov, Phys. Lett. A 383, 1893 (2019).ADSCrossRefGoogle Scholar
  19. 19.
    D. Saadatmand, D. Xiong, V. A. Kuzkin, A. M. Krivtsov, A. V. Savin, and S. V. Dmitriev, Phys. Rev. E 97, 022217 (2018).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    D. Xiong, D. Saadatmand, and S. V. Dmitriev, Phys. Rev. E 96, 042109 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    S. V. Dmitriev, E. A. Korznikova, Yu. A. Baimova, and M. G. Velarde, Phys. Usp. 59, 446 (2016).ADSCrossRefGoogle Scholar
  22. 22.
    L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B 81, 214306 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    J. A. Baimova, S. V. Dmitriev, and K. Zhou, Europhys. Lett. 100, 36005 (2012).ADSCrossRefGoogle Scholar
  24. 24.
    B. I. Swanson, J. A. Brozik, S. P. Love, G. F. Strouse, A. P. Shreve, A. R. Bishop, and W.-Z. Wangl, Phys. Rev. Lett. 82, 3288 (1999).ADSCrossRefGoogle Scholar
  25. 25.
    N. K. Voulgarakis, G. Kalosakas, A. R. Bishop, and G. P. Tsironis, Phys. Rev. 64, 020301 (2001).CrossRefGoogle Scholar
  26. 26.
    G. Kalosakas, A. R. Bishop, and A. P. Shreve, Phys. Rev. 66, 094303 (2002).CrossRefGoogle Scholar
  27. 27.
    D. K. Campbell, S. Flach, and Yu. S. Kivshar, Phys. Today 57, 43 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    M. E. Manley, A. Alatas, and F. Trouwet, Phys. Rev. 77, 214305 (2008).CrossRefGoogle Scholar
  29. 29.
    M. E. Manley, M. Yethiraj, and H. Sinn, Phys. Rev. Lett. 96, 125501 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    M. E. Manley, A. J. Sievers, and J. W. Lynn, Phys. Rev. 79, 134304 (2009).CrossRefGoogle Scholar
  31. 31.
    F. Geniet and J. Leon, Phys. Rev. Lett. 89, 134102 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    R. Khomeriki, S. Lepri, and S. Ruffo, Phys Rev. E 70, 066626 (2004).ADSCrossRefGoogle Scholar
  33. 33.
    I. Evazzade, I. P. Lobzenko, E. A. Korznikova, and I. A. Ovid’ko, Phys. Rev. B 95, 035423 (2017).ADSCrossRefGoogle Scholar
  34. 34.
    B. Yousefzadeh and A. S. Phani, J. Sound Vibr. 380, 242 (2016).Google Scholar
  35. 35.
    J. Leon, Phys. Lett. A 319, 130 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    L. Ponson, N. Boechler, Y. M. Lai, M. A. Porter, P. Kevrekidis, and C. Daraio, Phys. Rev. E 82, 021301 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    P. V. Zakharov, M. D. Starostenkov, S. V. Dmitriev, N. N. Medvedev, and A. M. Eremin, J. Exp. Theor. Phys. 121, 217 (2015).ADSCrossRefGoogle Scholar
  38. 38.
    P. V. Zakharov, E. A. Korznikova, S. V. Dmitirev, E. G. Ekomasov, and K. Zhou, Surf. Sci. 679, 1 (2019).ADSCrossRefGoogle Scholar
  39. 39.
    X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B 69, 144113 (2004).ADSCrossRefGoogle Scholar
  40. 40.
    G. P. Purja Pun and Y. Mishin, Philos. Mag. 89, 3245 (2009).ADSCrossRefGoogle Scholar
  41. 41.
    Information on LAMMPS Molecular Dynamics Simulator. Scholar
  42. 42.
    N. N. Medvedev, M. D. Starostenkov, P. V. Zakharov, and O. V. Pozhidaeva, Tech. Phys. Lett. 37, 98 (2011).ADSCrossRefGoogle Scholar
  43. 43.
    N. N. Medvedev, M. D. Starostenkov, P. V. Zakharov, and A. V. Markidonov, Pis’ma Mater., No. 3, 34 (2013).Google Scholar
  44. 44.
    E. L. Aero and A. N. Bulygin, Vychisl. Mekh. Splosh. Sred 1, 14 (2008).Google Scholar
  45. 45.
    E. L. Aero and A. N. Budygin, Vychisl. Mekh. Splosh. Sred 2, 19 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • P. V. Zakharov
    • 1
    Email author
  • M. D. Starostenkov
    • 2
  • E. A. Korznikova
    • 3
  • A. M. Eremin
    • 1
  • I. S. Lutsenko
    • 2
  • S. V. Dmitriev
    • 3
    • 4
  1. 1.Shukshin Altai State Humanitarian and Pedagogical UniversityBiyskRussia
  2. 2.Polzunov Altai State Technical UniversityBarnaulRussia
  3. 3.Institute for Problems of Superplasticity of Metals, Russian Academy of SciencesUfaRussia
  4. 4.National Research Tomsk State UniversityTomskRussia

Personalised recommendations