Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 2177–2182 | Cite as

Elastic Properties of La0.7 – yPryCa0.3MnO3 Single Crystals (0 ≤ y ≤ 0.3)

  • R. I. ZainullinaEmail author
LATTICE DYNAMICS
  • 9 Downloads

Abstract

Temperature dependences of longitudinal sound wave velocities and internal friction of ferromagnetic La0.7 – yPryCa0.3MnO3 single crystals (0 ≤ y ≤ 0.3) with the first-order magnetic phase transition have been analyzed. In the paramagnetic region, the temperature dependences of the sound velocity and internal friction exhibit extended temperature hysteresis, which is indicative of inhomogeneity of the paramagnetic state. Structural phase stratification is likely the main reason for the inhomogeneous paramagnetic state of La0.7 – yPryCa0.3MnO3 single crystals (0 ≤ y ≤ 0.3).

Keywords:

manganite sound velocity internal friction 

Notes

ACKNOWLEDGMENTS

The author is grateful to N.G. Bebenin for fruitful collaboration.

FUNDING

This study was performed within the government contract no. AAAA-A18-118020290104-2 on subject “Spin.”

CONFLICT OF INTEREST

The author declares that they have no conflicts of interest.

REFERENCES

  1. 1.
    R. I. Zainullina, N. G. Bebenin, V. V. Ustinov, Ya. M. Mukovskii, and D. A. Shulyatev, Phys. Rev. B 76, 014408 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    A. M. Balagurov, V. Yu. Pomjakushin, D. V. Sheptyakov, V. L. Aksenov, F. Fischer, L. Keller, O. Yu. Gorbenko, A. R. Kaul, and N. A. Babushkina, Phys. Rev. B 64, 024420 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Tokura, Rep. Prog. Phys. 69, 797 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    M. Uehara, S. Mori, C. H. Chen, and S.-W. Cheong, Nature (London, U.K.) 399, 560 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    A. M. Balagurov, V. Yu. Pomyakushin, V. L. Aksenov, N. A. Babushkina, L. M. Belova, O. Yu. Gorbenko, A. R. Kaul’, N. M. Plakida, P. Fisher, M. Gutman, and L. Keler, JETP Lett. 67, 705 (1998).ADSCrossRefGoogle Scholar
  6. 6.
    V. Kiryukhin, B. G. Kim, V. Podzorov, S.-W. Cheong, T. Y. Koo, J. P. Hill, I. Moon, and Y. H. Jeong, Phys. Rev. B 63, 024420 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    R. I. Zainullina, N. G. Bebenin, V. V. Ustinov, and Ya. M. Mukovskii, Phys. Met. Metallogr. 114, 390 (2013).ADSCrossRefGoogle Scholar
  8. 8.
    N. G. Bebenin, R. I. Zainullina, and V. V. Ustinov, Phys. Solid State 58, 296 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    N. G. Bebenin, R. I. Zainullina, V. V. Ustinov, and Ya. M. Mukovskii, J. Magn. Magn. Mater. 354, 76 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    D. Shulyatev, S. Karabashev, A. Arsenov, Ya. Mukovskii, and S. Zverkov, J. Cryst. Growth 237–239, 810 (2002).ADSCrossRefGoogle Scholar
  11. 11.
    H. J. McSkimin, in Physical Acoustics. Principles and Methods, Ed. by W. P. Mason (Academic, New York, 1964), Vol. 1, Pt. A, p. 272.Google Scholar
  12. 12.
    M. Uehara and S.-W. Cheong, Europhys. Lett. 52, 674 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    K. H. Ahn, T. Lookman, and A. R. Bishop, Nature (London, U.K.) 428, 401 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    D. I. Khomskii and K. I. Kugel, Europhys. Lett. 55, 208 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    K. I. Kugel’ and D. I. Khomskii, Sov. Phys. Usp. 25, 231 (1982).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations