Physics of the Solid State

, Volume 61, Issue 11, pp 2134–2138 | Cite as

Long-Lived Photocatalysis Centers Created in ZnO via Resonant Exciton Excitation

  • V. V. Titov
  • A. A. LisachenkoEmail author
  • I. Kh. Akopyan
  • M. E. Labzovskaya
  • B. V. Novikov


ZnO together with TiO2 is a main photocatalyst for various redox reactions to convert light energy into a chemical one and to purify the environment. Intrinsic surface defects in ZnO—the vacancies in anionic and cationic sublattices (F-type and V-type centers)—allow creation of long-lived (up to 103 s) photocatalysis centers and, therefore, tenfold increase in quantum yield of reactions. Slow surface states—the photocatalysis centers—appear via diffusion of electrons and holes generated during the interband transitions in the bulk of a photoactivated sample. The transfer efficiency, however, decreases sharply because of recombination of charge carriers and losses during overcoming the surface Schottky barrier. Neutral energy carriers—excitons—were used in this work to decrease these losses during the energy transfer to a surface. High exciton binding energy in ZnO (60 meV) allows it to move at room temperature without decay. The exciton energy loss for radiation is effectively decreased in our experiments via formation of a 2D surface structure. The results confirm high efficiency of exciton channel to form surface long-lived photocatalysis F-centers and V‑centers during the photoadsorption and photodesorption processes of oxygen, which simulate full cycle of a redox photocatalytic reaction.


ZnO excitons oxygen photoadsorption photodesorption surface long-lived centers 2D structure 



The authors are grateful to the staff of St. Petersburg State University Resource Centers: “Nanocomposites,” “Physical Methods of Surface Research,” “X-ray Diffraction Studies,” and “Nanophotonics.”


This work was financially supported by the Russian Foundation for Basic Research (project no. 18-03-00754).


The authors declare that they have no conflicts of interest.


  1. 1.
    Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, and M. A. Re-shchikov, J. Appl. Phys. 98, 041301 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    J. R. Sanchez-Valencia, M. Alcaire, P. Romero-Gómez, A. R. Gonzalez-Elipe, and A. Barranco, J. Phys. Chem. C 118, 9852 (2014).CrossRefGoogle Scholar
  3. 3.
    C. Jagadish and S. Pearton, Zinc Oxide: Bulk, Thin Films and Nanostructures (Elsevier, Amsterdam, 2006).Google Scholar
  4. 4.
    C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, Phys. Status Solidi B 247, 1424 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    N. H. Nickel and E. Terukov, Zinc Oxide—A Material for Micro- and Optoelectronic Applications (Springer, Berlin, 2005).CrossRefGoogle Scholar
  6. 6.
    V. V. Titov, A. A. Lisachenko, I. Kh. Akopyan, M. E. Labzowskaya, and B. V. Novikov, J. Lumin. 195, 153 (2018).CrossRefGoogle Scholar
  7. 7.
    I. V. Blashkov, L. L. Basov, and A. A. Lisachenko, J. Phys. Chem. C 121, 28364 (2017).CrossRefGoogle Scholar
  8. 8.
    A. A. Lisachenko, J. Photochem. Photobiology A 354, 47 (2018).CrossRefGoogle Scholar
  9. 9.
    I. Kh. Akopyan, M. E. Labzovskaya, A. A. Lisachenko, B. V. Novikov, A. Yu. Serov, V. V. Titov, N. G. Filosofov, Phys. Solid State 58, No. 9, 1767 (2016).Google Scholar
  10. 10.
    A. A. Lisachenko, Phys. B: Condens. Matter 404, 4842 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Lisachenko, Phys. Low-Dim. Struct., Nos. 7–8, 1 (2000).Google Scholar
  12. 12.
    V. E. Drozd, V. V. Titov, I. A. Kasatkin, L. L. Basov, A. A. Lisachenko, O. L. Stroyuk, and S. Y. Kuchmiy, Thin Solid Films 573, 128 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Lisachenko, J. Photochem. Photobiol. A 196, 127 (2008).CrossRefGoogle Scholar
  14. 14.
    Y. Wang, B. Yang, N. Can, and P. D. Tounsend, J. Appl. Phys. 109, 053508 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    P. A. Rodnyi, K. A. Chernenko, A. Zolotarjovs, L. Grigorjeva, E. I. Gorokhova, and I. D. Venevtsev, Phys. Solid State 58, 2055 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    U. Pal, R. Melendrez, V. Chernov, and M. Barboza-Flores, Appl. Phys. Lett. 89, 183118 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Titov
    • 1
  • A. A. Lisachenko
    • 1
    Email author
  • I. Kh. Akopyan
    • 1
  • M. E. Labzovskaya
    • 1
  • B. V. Novikov
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations