Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 2224–2227 | Cite as

Synthesis and Gas-Sensing Properties of MnO2 – x and MnO2 – x/CuO-Coated Multiwalled Carbon Nanotube Nanocomposites

  • Yu. A. Sten’kin
  • V. V. Bolotov
  • D. V. SokolovEmail author
  • V. E. Roslikov
  • K. E. Ivlev
LOW-DIMENSIONAL SYSTEMS
  • 4 Downloads

Abstract

Nanocomposites based on multiwall carbon nanotubes (MWCNTs) impregnated with manganese oxide MnO2 – x and copper oxide CuO are synthesized and studied. The morphology and elemental composition of MWCNT layers and MWCNT/MnO2 – x and MWCNT/MnO2 – x/CuO nanocomposites are investigated by scanning electron microscopy and X-ray photoelectron spectroscopy. We study the gas-sensing response of the prepared nanocomposites to hydrogen sulfide (H2S) and nitrogen dioxide (NO2). An increase in the conductance observed for the as-grown MWCNTs and the nanocomposites upon NO2 adsorption suggests that these structures exhibit a behavior characteristic of p-type conductivity. Nanocomposites with copper show a markedly enhanced gas-sensing response to H2S.

Keywords:

carbon nanotubes manganese oxide copper oxide nanocomposites gas-sensing response 

Notes

ACKNOWLEDGMENTS

The authors are grateful to S.N. Nesov and P.M. Ko-rusenko for XPS measurements.

FUNDING

The work (the part concerning research of gas-sensing properties of nanocomposites) was performed within a government assignment to the Omsk Scientific SB RAS within the Basic Scientific Research Program for state academies for years 2013–2020, direction II.9, project no. II.9.2.1 (registration number in EGISU NIOKTR system, AAAA-A17-117041210227-8). The part concerning the nanocomposite synthesis and morphological studies using scanning electron microscopy was partially supported by the Russian Foundation for Basic Research, project no. 18-48-550009r_a.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    S. Iijima, Lett. Nature 354, 56 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    P. J. F. Harris, Carbon Nanotubes and Related Structures (Cambridge Univ. Press, Cambridge, 1999).CrossRefGoogle Scholar
  3. 3.
    M. Endo, S. Iijima, and M. S. Dresselhaus, Carbon Nanotubes (Pergamon, Oxford, 1996).Google Scholar
  4. 4.
    V. M. Arutyunyan, Izv. NAN Arm., Fiz. 50, 448 (2015).Google Scholar
  5. 5.
    E. S. Rembeza, Vestn. VGU, Ser. Fiz. Mat. 1, 74 (2006).Google Scholar
  6. 6.
    A. G. Kurenya, D. V. Gorodetskiy, V. E. Arkhipov, and A. V. Okotrub, Tech. Phys. Lett. 39, 258 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    M. A. Stranick, Surf. Sci. Spectra 6, 31 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    K. Munawar, M. A. Mansoor, W. J. Basirun, M. Misran, N. M. Huang, and M. Mazhar, RSC Adv. 7, 15885 (2017).Google Scholar
  9. 9.
    N. A. Davletkil’deev, D. V. Sokolov, V. V. Bolotov, and I. A. Lobov, in Proceedings of the 27th Russian Conference on Modern Methods of Electron and Probe Microscopy in Studies of Organic, Inorganic Nanostructures and Nanobiomaterials, (2018), Vol. 1, p. 121.Google Scholar
  10. 10.
    P. V. Shinde, Q. X. Xia, B. G. Ghule, N. M. Shinde, J. Seonghee, H. K. Kwang, and R. S. Mane, Appl. Surf. Sci. 442, 178 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    C. N. R. Rao and B. Raveau, Transition Metal Oxides: Structure, Properties and Synthesis of Ceramics Oxides (Wiley–VCH, New York, 1998), p. 873.Google Scholar
  12. 12.
    S. Bhuvaneshwari, S. Papachan, and N. Gopalakrishnan, AIP Conf. Proc. 1832, 050126 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. A. Sten’kin
    • 1
  • V. V. Bolotov
    • 1
    • 2
  • D. V. Sokolov
    • 1
    Email author
  • V. E. Roslikov
    • 1
  • K. E. Ivlev
    • 1
  1. 1.Omsk Scientific Center, Siberian Branch, Russian Academy of SciencesOmskRussia
  2. 2.Dostoevsky Omsk State UniversityOmskRussia

Personalised recommendations