Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 2019–2025 | Cite as

Calculating the Lattice Dynamics in the RFe3(BO3)4 Crystals in the Quasi-Harmonic Approximation

  • M. S. PavlovskiiEmail author
  • N. D. Andryushin
DIELECTRICS
  • 4 Downloads

Abstract

The frequencies of lattice vibrations in the RFe3(BO3)4 (R = Pr, Nd, Tb, Dy, or Ho) crystals in the high-temperature R32 phase and their temperature dependence have been calculated using the quasi-harmonic approximation. It has been found that, at the boundary point Λ of the Brillouin zone, the frequency of the unstable vibration mode the structural phase transition R32 → P3121 is related to strong changes with temperature in the TbFe3(BO3)4, DyFe3(BO3)4, and HoFe3(BO3)4 crystals. With increasing temperature, the frequency of the soft mode stabilizes and takes a real value. No significant changes in the phonon spectra, including the boundary point Λ, with increasing temperature for the PrFe3(BO3)4 and NdFe3(BO3)4 crystals have been observed.

Keywords:

lattice dynamics structural instability ab initio calculations phase transitions 

Notes

FUNDING

This study was supported by the Russian Science Foundation, project no. 17-72-10122.

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    J. A. Campá, C. Cascales, E. Gutiérrez-Puebla, M. A. Monge, I. Rasines, and C. Ruíz-Valero, Chem. Mater. 9, 237 (1997).CrossRefGoogle Scholar
  2. 2.
    Y. Hinatsu, Y. Doi, K. Ito, M. Wakeshima, and A. Alemi, J. Solid State Chem. 172, 438 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    S. A. Klimin, D. Fausti, A. Meetsma, L. N. Bezmaternykh, P. H. M. van Loosdrecht, and T. T. M. Palstra, Acta Crystallogr., Sect. B 61, 481 (2005).CrossRefGoogle Scholar
  4. 4.
    D. Fausti, A. A. Nugroho, P. H. M. van Loosdrecht, S. A. Klimin, M. N. Popova, and L. N. Bezmaternykh, Phys. Rev. B 74, 024403 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    V. S. Kurnosov, V. V. Tsapenko, L. N. Bezmaternykh, and I. A. Gudim, Low Temp. Phys. 40, 1087 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    V. I. Zinenko, M. S. Pavlovskii, A. S. Krylov, I. A. Gudim, and E. V. Eremin, J. Exp. Theor. Phys. 117, 1032 (2013).CrossRefGoogle Scholar
  7. 7.
    M. S. Pavlovskiy, K. A. Shaykhutdinov, L. S. Wu, G. Ehlers, V. L. Temerov, I. A. Gudim, A. S. Shinkorenko, and A. Podlesnyak, Phys. Rev. B 97, 054313 (2018).ADSCrossRefGoogle Scholar
  8. 8.
    M. S. Pavlovskii, V. I. Zinenko, and A. S. Shinkorenko, JETP Lett. 108, 116 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    A. Togo, L. Chaput, I. Tanaka, and G. Hug, Phys. Rev. B 81, 174301 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B 57, 1505 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    A. Togo and T. Tanaka, Scr. Mater. 108, 1 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Kirensky Institute of Physics, Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations