Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 1999–2004 | Cite as

Effect of the Chemical Composition of TlIn1 – xErxS2 (0 ≤ x ≤ 0.01) Crystals on Their Dielectric Characteristics and the Parameters of Localized States

  • S. N. MustafaevaEmail author
  • M. M. Asadov
SEMICONDUCTORS
  • 2 Downloads

Abstract

The frequency dependences of the real (ε') and imaginary (ε'') parts of the complex dielectric permittivity, the dielectric loss tangent (tanδ), and the ac conductivity (σac) in the frequency range f = 5 × 104–3.5 × 107 Hz have been studied in the TlIn1 – xErxS2 (0 ≤ x ≤ 0.01) crystals synthesized in this work. It is found that, in TlIn1 – xErxS2, the relaxation dispersions of ε' and ε'' take place. The effect of the erbium concentration (Er) in the TlIn1 – xErxS2 crystals on their dielectric coefficients has been studied. At high frequencies, the ac conductivity of the TlIn1 – xErxS2 crystals obeys the relationship σac ~ f 0.8, which is characteristic of the hopping mechanism of the charge transfer over states localized near the Fermi level. The parameters of the states localized in the forbidden band of TlIn1 – xErxS2 and the influence of the chemical composition of the crystals on these parameters are estimated.

Keywords:

complex TlIn1 – xErxS2 crystals frequency dispersion dielectric loss hopping mechanism of charge transfer parameters of localized states 

Notes

FUNDING

This work was supported by the Foundation for Development of Science at the President of the Azerbaijan Republic (projects nos. EIF-BGM-3-BRFTF-2+/2017-15/05/1-M-13 and EIF-BGM-4-RFTF-1/2017-21/05/1-M-07) and SOCAR Azerbaijan Republic (project 12LR-AMEA).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    Y. Shim, W. Okada, K. Wakita, and N. Mamedov, J. Appl. Phys. 102, 1 (2007).CrossRefGoogle Scholar
  2. 2.
    T. D. Ibragimov and I. I. Aslanov, Solid State Commun. 123, 339 (2002).ADSCrossRefGoogle Scholar
  3. 3.
    O. Z. Alekperov, G. B. Ibragimov, I. A. Axundov, A. I. Nadjafov, and A. R. Fakix, Phys. Status Solidi C 6, 981 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    M. M. El-Nahass, S. B. Youssef, H. A. M. Ali, and A. Hassan, Eur. Phys. J. Appl. Phys. 55, 1 (2011).CrossRefGoogle Scholar
  5. 5.
    O. O. Gomonnai, R. R. Rosul, P. P. Guranich, A. G. Slivka, I. Yu. Roman, and M. Yu. Rigan, High Press. Res. 32, 39 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    M. Isik, S. Delice, and N. M. Gasanly, Acta Phys. Polon. A 126, 1299 (2014).CrossRefGoogle Scholar
  7. 7.
    S. Delice and N. M. Gasanly, Phys. B (Amsterdam, Neth.) 499, 44 (2016).Google Scholar
  8. 8.
    I. M. Ashraf, A. Salem, and M. J. A. L. Salah, Eur. J. Appl. Eng. Sci. Res. 6 (2), 34 (2018).Google Scholar
  9. 9.
    A. P. Odrinskii, M.-H. Yu. Seyidov, R. A. Suleymanov, T. G. Mammadov, and V. B. Aliyeva, Phys. Solid State 58, 716 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Araki, R. Asaba, K. Wakita, Y. G. Shim, K. Mimura, and N. Mamedov, Phys. Status Solidi C 10, 1136 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    K. Wakita, M. Hagiwara, R. Paucar, Y. Shim, K. Mimura, and N. Mamedov, J. Phys.: Conf. Ser. 619, 012006 (2015).  https://doi.org/10.1088/1742-6596/619/1/012006 CrossRefGoogle Scholar
  12. 12.
    S. N. Mustafaeva, V. A. Aliev, and M. M. Asadov, Phys. Solid State 40, 561 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    S. N. Mustafaeva, M. M. Asadov, and V. A. Ramazanzade, Phys. Solid State 38, 7 (1996).ADSGoogle Scholar
  14. 14.
    A. V. Korotkii, A. U. Sheleg, V. V. Shevtsova, A. V. Mudryi, and S. N. Mustafaeva, J. Appl. Spectrosc. 79, 398 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    S. N. Mustafaeva, M. M. Asadov, and A. A. Ismailov, Phys. Solid State 51, 2269 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    A. U. Sheleg, V. G. Gurtovoi, V. V. Shevtsova, S. N. Mustafaeva, and E. M. Kerimova, Phys. Solid State 54, 1870 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    S. N. Mustafaeva, V. A. Ramazanzade, and M. M. Asadov, Mater. Chem. Phys. 40, 142 (1995).CrossRefGoogle Scholar
  18. 18.
    S. N. Mustafaeva, M. M. Asadov, and V. A. Ramazanzade, Neorg. Mater. 31, 318 (1995).Google Scholar
  19. 19.
    S. N. Mustafaeva, M. M. Asadov, E. M. Kerimova, and N. Z. Gasanov, Inorg. Mater. 49, 1175 (2013).CrossRefGoogle Scholar
  20. 20.
    S. N. Mustafaeva, M. M. Asadov, and E. M. Kerimova, Phys. Solid State 55, 2466 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    A. U. Sheleg, V. V. Shautsova, V. G. Hurtavy, S. N. Mustafaeva, and E. M. Kerimova, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 1052 (2013).CrossRefGoogle Scholar
  22. 22.
    S. N. Mustafaeva, Zh. Radioelektron., No. 5, 1 (2008).Google Scholar
  23. 23.
    V. V. Pasynkov and V. S. Sorokin, Electronic Materials (Vyssh. Shkola, Moscow, 1986) [in Russian].Google Scholar
  24. 24.
    N. F. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1971).Google Scholar
  25. 25.
    Yu. I. Ravich and S. A. Nemov, Semiconductors 36, 1 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Physics, Azerbaijan National Academy of SciencesBakuAzerbaijan
  2. 2.Institute of Catalysis and Inorganic Chemistry named after Academician M. F. Nagiev, Azerbaijan National Academy of SciencesBakuAzerbaijan

Personalised recommendations