Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 2145–2154 | Cite as

Change in the Thermodynamic Properties of a Si–Ge Solid Solution at a Decrease of the Nanocrystal Size

  • M. N. MagomedovEmail author
LATTICE DYNAMICS
  • 5 Downloads

Abstract

The equation of state and the thermodynamic properties of the substitutional solid solution Si0.5‒Ge0.5 are calculated in the framework of the “ medium atom” model. The changes in the equation of state and the thermodynamic properties upon the transition from a macrocrystal to a nanocrystal of 222 atoms with the geometric Gibbs surface are calculated using the RP-model of nanocrystal. The calculations have been performed along isotherms T = 100, 300, and 1000 K in the pressure range –1< P < 7 GPa. The changes in the properties is studied at the isochoric and also isobaric (P = 0) decrease of the number of atoms in the nanocrystal. It is shown that, at the isobaric (P = 0) decrease in the size, the specific volume of the Si0.5–Ge0.5 nanocrystal increases the more significantly, the higher the nanocrystal temperature.

Keywords:

nanocrystal isochore isobar silicon germanium 

Notes

ACKNOWLEDGMENTS

The author is grateful to E.N. Akhmedov, S.P. Kramynin, N.Sh. Gazanova, and Z.M. Surkhaeva for fruitful discussions and assistance in the work.

FUNDING

This work was supported by the Russian Foundation for Basic Research (project no. 18-29-11013_mk) and program no. 6 of the Presidium of the Russian Academy of Sciences grant no. 2-13.

CONFLICT OF INTEREST

The author declares that he has no conflicts of interest.

REFERENCES

  1. 1.
    J. Biskupek, U. Kaiser, and K. Gärtner, J. Electron Microsc. 54, 493 (2005).  https://doi.org/10.1093/jmicro/dfi067 CrossRefGoogle Scholar
  2. 2.
    A. A. Shklyaev, V. A. Volodin, M. Stoffel, H. Rinnert, and M. Vergnat, J. Appl. Phys. 123, 015304 (2018).  https://doi.org/10.1063/1.5009720 ADSCrossRefGoogle Scholar
  3. 3.
    M. N. Magomedov, Phys. Solid State 59, 1085 (2017).  https://doi.org/10.1134/S1063783417060142 ADSCrossRefGoogle Scholar
  4. 4.
    M. N. Magomedov, Phys. Solid State 60, 981 (2018).  https://doi.org/10.1134/S1063783418050190 ADSCrossRefGoogle Scholar
  5. 5.
    M. N. Magomedov, Tech. Phys. 59, 1658 (2014).  https://doi.org/10.1134/S106378421411019X CrossRefGoogle Scholar
  6. 6.
    M. N. Magomedov, Phys. Solid State 61, 642 (2019).  https://doi.org/10.1134/S106378341904019X ADSCrossRefGoogle Scholar
  7. 7.
    P. Sharma and S. Ganti, J. Mater. Res. 18, 1823 (2003).  https://doi.org/10.1557/JMR.2003.0253 ADSCrossRefGoogle Scholar
  8. 8.
    V. M. Huxter, A. Lee, S. S. Lo, and G. D. Scholes, Nano Lett. 9, 405 (2008).  https://doi.org/10.1021/nl803275a ADSCrossRefGoogle Scholar
  9. 9.
    M. N. Magomedov, Tech. Phys. Lett. 39, 409 (2013).  https://doi.org/10.1134/S1063785013050076 ADSCrossRefGoogle Scholar
  10. 10.
    L. Liang, M. Li, F. Qin, and Y. Wei, Philos. Mag. 93, 574 (2013).  https://doi.org/10.1080/14786435.2012.725950 ADSCrossRefGoogle Scholar
  11. 11.
    C. J. Bhatt and K. Kholiya, Indian J. Pure Appl. Phys. 52, 604 (2014). http://nopr.niscair.res.in/handle/123456789/29354Google Scholar
  12. 12.
    M. Ya. Gamarnik, Sov. Phys. Solid State 30, 808 (1988).Google Scholar
  13. 13.
    M. Ya. Gamarnic, Phys. Rev. B 54, 2150 (1996).  https://doi.org/10.1103/PhysRevB.54.2150 ADSCrossRefGoogle Scholar
  14. 14.
    M. N. Magomedov, Nanotechnol. Russ. 9, 293 (2014).  https://doi.org/10.1134/S1995078014030100 CrossRefGoogle Scholar
  15. 15.
    S. V. Stankus, R. A. Khairulin, and P. V. Tyagel’skii, High Temp. 37, 529 (1999). http://mi.mathnet.ru/tvt2324Google Scholar
  16. 16.
    Database. http://www.ioffe.ru/SVA/NSM/Semicond/SiGe/basic.html.Google Scholar
  17. 17.
    M. N. Magomedov, Inorg. Mater. 46, 1181 (2010).  https://doi.org/10.1134/S002016851011004X CrossRefGoogle Scholar
  18. 18.
    S. Goumri-Said, M. B. Kanoun, A. E. Merad, G. Merad, and H. Aourag, Mater. Sci. Eng. B 111, 207 (2004).  https://doi.org/10.1016/j.mseb.2004.04.016 CrossRefGoogle Scholar
  19. 19.
    Y. Zhu, X. Zhang, S. Zhang, X. Sun, L. Wang, M. Ma, and R. Liu, Appl. Phys. A 115, 667 (2014).  https://doi.org/10.1007/s00339-013-7847-4 ADSCrossRefGoogle Scholar
  20. 20.
    Z. Sui, H. H. Burke, and I. P. Herman, Phys. Rev. B 48, 2162 (1993).  https://doi.org/10.1103/PhysRevB.48.2162 ADSCrossRefGoogle Scholar
  21. 21.
    H.-M. Kagaya, Y. Kitani, and T. Soma, Solid State Commun. 58, 399 (1986).  https://doi.org/10.1016/0038-1098(86)90814-8 ADSCrossRefGoogle Scholar
  22. 22.
    M. Mendik, M. Ospelt, H. von Känel, and P. Wachter, Appl. Surf. Sci. 50, 303 (1991).  https://doi.org/10.1016/0169-4332(91)90187-o ADSCrossRefGoogle Scholar
  23. 23.
    B. Bouhafs, H. Aourag, M. Ferhat, and M. Certier, J. Phys. Chem. Solids 59, 759 (1998).  https://doi.org/10.1016/S0022-3697(97)00152-2 ADSCrossRefGoogle Scholar
  24. 24.
    V. K. Tewary, Phys. Lett. A 375, 3811 (2011).  https://doi.org/10.1016/j.physleta.2011.08.054 ADSCrossRefGoogle Scholar
  25. 25.
    V. K. Tewary and M. D. Vaudin, Comput., Mater. Cont. 25, 265 (2011).  https://doi.org/10.3970/cmc.2011.025.265 CrossRefGoogle Scholar
  26. 26.
    J. P. Dismukes, L. Ekstrom, and R. J. Paff, J. Phys. Chem. 68, 3021 (1964).  https://doi.org/10.1021/j100792a049 CrossRefGoogle Scholar
  27. 27.
    B. F. Ormont, Introduction to Physical Chemistry and Crystal Chemistry of Semiconductors (Vysshaya Shkola, Moscow, 1968) [in Russian].Google Scholar
  28. 28.
    Yu. B. Bolkhovityanov, O. P. Pchelyakov, and S. I. Chikichev, Phys. Usp. 44, 655 (2001).  https://doi.org/10.3367/UFNr.0171.200107a.0689 ADSCrossRefGoogle Scholar
  29. 29.
    V. A. Zinov’ev, Avtometriya 45, 60 (2007).  https://doi.org/10.3103/S8756699009040086 CrossRefGoogle Scholar
  30. 30.
    V. B. Fedoseev and A. V. Shishulin, Phys. Solid State 60, 1398 (2018).  https://doi.org/10.1134/S1063783418070120 ADSCrossRefGoogle Scholar
  31. 31.
    V. Ravi, S. Firdosy, T. Caillat, E. Brandon, K. van der Walde, L. Maricic, and A. Sayir, J. Electron. Mater. 38, 1433 (2009).  https://doi.org/10.1007/s11664-009-0734-2 ADSCrossRefGoogle Scholar
  32. 32.
    L. Pavlova, Y. Shtern, and E. Kirilenko, J. Mater. Sci. 52, 921 (2017).  https://doi.org/10.1007/s10853-016-0387-5 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute for Geothermal Research, Dagestan Scientific Center, Russian Academy of SciencesMakhachkalaRussia

Personalised recommendations