Physics of the Solid State

, Volume 61, Issue 11, pp 1955–1959 | Cite as

On a Nonlinear Effect in the Superconductivity Theory

  • S. O. GladkovEmail author


Based on the solution of the hydrodynamic equations and Maxwell’s equations, we show that an external quasi-homogeneous magnetic field leads to the emergence of a secondary electric field that is resulted from a nonlinear effect over magnetic potential A. This field is proved to exist in the region with a depth of \(\delta {\text{/}}2\), where δ is the London penetration depth. The hydrodynamic flow velocity is estimated.


Maxwell equations penetration depth magnetic field electric field nonlinear effect 



The authors declare that they have no conflicts of interest.


  1. 1.
    J. Schrieffer, Theory of Superconductivity (W.A. Benjamin, New York, 1964).zbMATHGoogle Scholar
  2. 2.
    M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004).Google Scholar
  3. 3.
    A. V. Svidzinskii, Spatially Inhomogeneous Problems of the Theory of Superconductivity (Nauka, Moscow, 1982) [in Russian].Google Scholar
  4. 4.
    M. Tinkham, Introduction to superconductivity, 2nd ed. (McGraw-Hill, New York, 1996).Google Scholar
  5. 5.
    V. V. Schmidt, The Physics of Superconductors: Introduction to Fundamentals and Applications (MTsNMO, Moscow, 2000; Springer, Berlin, Heidelberg, 1997).Google Scholar
  6. 6.
    N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Clarendon, Oxford, 2001).CrossRefGoogle Scholar
  7. 7.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).Google Scholar
  8. 8.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).Google Scholar
  9. 9.
    S. O. Gladkov, Tech. Phys. 60, 1082 (2015).CrossRefGoogle Scholar
  10. 10.
    S. O. Gladkov and S. B. Bogdanova, J. Commun. Technol. Electron. 62, 740 (2017).CrossRefGoogle Scholar
  11. 11.
    S. O. Gladkov and S. B. Bogdanova, Russ. Phys. J. 61, 102 (2018).CrossRefGoogle Scholar
  12. 12.
    H. Bateman and A. Erdelyi, Higher Transcedental Functions (McGraw-Hill, New York, 1953), Vol. 2.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Research University Moscow Aviation InstituteMoscowRussia

Personalised recommendations