Physics of the Solid State

, Volume 61, Issue 11, pp 1979–1984 | Cite as

NMR Investigation of the WTe2 Weyl Semimetal below the Topological Transition Temperature

  • A. O. Antonenko
  • E. V. CharnayaEmail author
  • M. K. Lee
  • L. J. Chang
  • J. Haase
  • S. V. Naumov
  • A. N. Domozhirova
  • V. V. Marchenkov


NMR investigations are performed on 125Te nuclei of WTe2 Weyl topological semimetal at temperatures of 41 and 293 K. The measurements were carried out using a Bruker Avance 500 NMR pulse spectrometer. The 125Te NMR spectra for a WTe2 single crystal are obtained for the orientation of crystal axis c parallel and perpendicular to the quantizing field. A complicated form of the spectra was related to the presence of four nonequivalent positions of tellurium atoms in the crystalline structure of WTe2. The longitudinal magnetization recovery was studied after the pulse saturation for particular spectral lines. An exponential character of relaxation is revealed. The frequency shift and width of spectral lines were found to be insignificantly different at the two temperatures, while the times of nuclear spin-lattice relaxation at 41 K exceeded approximately by 30 times the corresponding times measured at room temperature. The strong temperature dependence of the relaxation is supposedly related to the contribution of the Weyl quasi-particles below the topological phase transition.


Weyl semimetals nuclear magnetic resonance topological phase transition thermoelectrics 



The measurements were performed with the use of the equipment of the centers of the Research Park of St. Petersburg State University “Center for diagnostics of functional materials for medicine, pharmacology, and nanoelectronics” and “X-ray diffraction studies.”


This work was supported by the Russian Foundation for Basic Research (projects nos. 19-57-52001, 19-07-00028, and 17-52-52008) in the framework of the governmental task of the Ministry of Education and Science of the Ru-ssian Federation (theme “Spin,” no. AAAA-A18-118020290104-2) with a partial support of the Government of the Russian Federation (regulation no. 211, contract no. 02.A03.21.0006).


The authors declare the absence of any conflicts of interest.


  1. 1.
    A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature (London, U.K.) 527, 495 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    F. Y. Bruno, A. Tamai, Q. S. Wu, I. Cucchi, C. Barreteau, A. de la Torre, S. McKeown Walker, S. Riccó, Z. Wang, T. K. Kim, M. Hoesch, M. Shi, N. C. Plumb, E. Giannini, A. A. Soluyanov, and F. Baumberger, Phys. Rev. B 94, 121112(R) (2016).Google Scholar
  3. 3.
    C. Herring, Phys. Rev. 52, 365 (1937).ADSCrossRefGoogle Scholar
  4. 4.
    S. Murakami, New J. Phys. 9, 356 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Burkov, Nat. Mater. 15, 1145 (2016).ADSCrossRefGoogle Scholar
  6. 6.
    S. M. Young, S. Zaheer, J. C. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    Y. Sun, S.-C. Wu, M. N. Ali, C. Felser, and B. Yan, Phys. Rev. B 92, 161107 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    Z. Wang, D. Gresch, A. A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R. J. Cava, and B. A. Bernevig, Phys. Rev. Lett. 117, 056805 (2016).ADSCrossRefGoogle Scholar
  9. 9.
    Y.-Y. Lv, X. Li, B.-B. Zhang, W. Y. Deng, S.-H. Yao, Y. B. Chen, J. Zhou, S.-T. Zhang, M.-H. Lu, L. Zhang, M. Tian, L. Sheng, and Y.-F. Chen, Phys. Rev. Lett. 118, 096603 (2017).ADSCrossRefGoogle Scholar
  10. 10.
    D. Koumoulis, R. E. Taylor, J. McCormick, Y. N. Ertas, L. Pan, X. Che, K. L. Wang, and L.-S. Bouchard, J. Chem. Phys. 147, 084706 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    H. Yasuoka, T. Kubo, Y. Kishimoto, D. Kasinathan, M. Schmidt, B. Yan, Y. Zhang, H. Tou, C. Felser, A. P. Mackenzie, and M. Baenitz, Phys. Rev. Lett. 118, 236403 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    Z. Okvátovity, F. Simon, and B. Dóra, Phys. Rev. B 94, 245141 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    Z. Okvátovity, H. Yasuoka, M. Baenitz, F. Simon, and B. Dóra, Phys. Rev. B 99, 115107 (2019).ADSCrossRefGoogle Scholar
  14. 14.
    D. Kang, Y. Zhou, W. Yi, C. Yang, J. Gou, Y. Shi, S. Zhang, Z. Wang, C. Zhang, S. Jiang, A. Li, K. Yang, Q. Wu, G. Zhang, L. Sun, and Z. Zhao, Nat. Commun. 6, 7804 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    X.-C. Pan, X. Chen, H. Liu, Y. Feng, Z. Wei, Y. Zhou, Z. Chi, L. Pi, F. Yen, F. Song, X. Wan, Z. Yang, B. Wang, G. Wang, and Y. Zhang, Nat. Commun. 6, 7805 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    R. K. Harris, E. D. Becker, S. M. C. DeMenezes, R. Goodfellow, and P. Granger, Pure Appl. Chem. 73, 1795 (2001).CrossRefGoogle Scholar
  17. 17.
    I. Orion, J. Rocha, S. Jobic, V. Abadie, R. Brec, C. Fernandez, and J.-P. Amoureux, J. Chem. Soc., Dalton Trans. 20, 3741 (1997).CrossRefGoogle Scholar
  18. 18.
    B. Njegic, E. M. Levin, and K. Schmidt-Rohr, Solid State Nucl. Magn. Res. 55–56, 79 (2013).CrossRefGoogle Scholar
  19. 19.
    C. H. Lee, E. C. Silva, L. Calderin, M. A. Nguyen, M. J. Hollander, B. Bersch, T. E. Mallou, and J. A. Ro-binson, Sci. Rep. 5, 10013 (2015).ADSCrossRefGoogle Scholar
  20. 20.
    J. Korringa, Phys. (Amsterdam, Neth.) 16, 601 (1950).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. O. Antonenko
    • 1
  • E. V. Charnaya
    • 1
    Email author
  • M. K. Lee
    • 2
  • L. J. Chang
    • 2
  • J. Haase
    • 3
  • S. V. Naumov
    • 4
  • A. N. Domozhirova
    • 4
  • V. V. Marchenkov
    • 4
    • 5
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.National Cheng Kung UniversityTainanTaiwan
  3. 3.University of LeipzigLeipzigGermany
  4. 4.Mikheev Institute of Metal Physics, Ural Branch of the Russian Academy of SciencesYekaterinburgRussia
  5. 5.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations