Advertisement

Physics of the Solid State

, Volume 61, Issue 11, pp 2155–2159 | Cite as

Lattice Structure and Dynamics of Two-Layer Heterostructures of Barium–Strontium Titanate and Layered Bismuth Titanate of Various Thicknesses on a Magnesium Oxide Substrate

  • A. S. Anokhin
  • Yu. I. Golovko
  • V. M. MukhortovEmail author
  • D. V. Stryukov
LATTICE DYNAMICS

Abstract

The lattice structure and dynamics of single-crystal Bi4Ti3O12 with a thickness from 4 to 430 nm on a (001)MgO substrate with a previously deposited Ba0.4Sr0.6TiO3 sublayer (4 nm) have been studied. The two-layer structures were prepared by radio-frequency sputtering of ceramic targets of the corresponding compositions. The X-ray diffraction studies performed at room temperature have shown that, in this heterostructure, axis c of the Bi4Ti3O12 unit cell is perpendicular to the substrate, and direction [100] has an angle of ±45° to the [100]MgO direction. At the thicknesses of Bi4Ti3O12 to ~40 nm, the film unit cell is compressed in the direction of a normal to the substrate plane and extended in the conjugate plane, and the sign of the deformation is changed at large thicknesses. It is found that the phonon mode frequency in the Bi4Ti3O12 film shift and additional peaks appear in the Raman spectra, which demonstrates an increase in the degree of monoclinic distortion of the film crystal structure as compared to the crystal structure.

Keywords:

ferroelectric film heterostructures two-dimensional stresses lattice dynamics 

Notes

FUNDING

This work was supported by state task (project no. 0120-1354-247) and the Russian Foundation for Basic Research (project no. 16-29-14013).

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

  1. 1.
    C. D. Theis, J. Yeh, D. G. Schlom, M. E. Hawley, G. W. Brown, J. C. Jiang, and X. Q. Pan, Appl. Phys. Lett. 72, 2817 (1998).ADSCrossRefGoogle Scholar
  2. 2.
    G. W. Brown, M. E. Hawley, C. D. Theis, J. Yeh, and D. G. Schlom, Thin Solid Films 357, 13 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    W. Jo, H-J. Cho, T. W. Noh, B. I. Kim, D.-Y. Kim, Z. G. Khim, and S. Kwun, Appl. Phys. Lett. 63, 2198 (1993).ADSCrossRefGoogle Scholar
  4. 4.
    K. Hwang and Y. Park, J. Mater. Res. 16, 2519 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    W. Jo, G-C. Yi, T. W. Noh, D-K. Ko, Y. S. Cho, and S.-I. Kwun, Appl. Phys. Lett. 61, 1526 (1992).ADSCrossRefGoogle Scholar
  6. 6.
    B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee, and W. Joe, Nature (London, U.K.) 401, 682 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    O. Khorkhordin, Chia-Pin Yeh, B. Kalkofen, and E. Burte, J. Cryst. Proc. Technol. 5, 49 (2015).Google Scholar
  8. 8.
    D. H. Kuo and K. C. Chiang, Thin Solid Films 516, 5985 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    C. D. Theis, J. Yeh, D. G. Schlom, M. E. Hawley, G. W. Brown, J. C. Jiang, and X. Q. Pan, Appl. Phys. Lett. 72, 2817 (1998).ADSCrossRefGoogle Scholar
  10. 10.
    C. M. Bedoya-Hincapie, E. R. Parra, J. J. Olaya-Florez, J. E. Alfonso, F. J. Flores-Ruiz, and F. J. Espinoza-Beltran, Ceram. Int. 40, 11831 (2014).CrossRefGoogle Scholar
  11. 11.
    A. S. Anokhin, S. V. Biryukov, Yu. I. Golovko, and V. M. Mukhortov, Phys. Solid State 61, 139 (2019).ADSCrossRefGoogle Scholar
  12. 12.
    Q. Zhou, B. J. Kennedy, and C. J. Howard, Chem. Mater. 15, 5025 (2003).CrossRefGoogle Scholar
  13. 13.
    X. Q. Pan, J. C. Jiang, C. D. Theis, and D. G. Schlom, Appl. Phys. Lett. 83, 2315 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    K. Liang, Y. Qi, and C. Lu, J. Raman Spectrosc. 40, 2088 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    P. R. Graves, G. Hua, S. Myhra, and J. G. Thompson, J. Solid State Chem. 114, 112 (1995).ADSCrossRefGoogle Scholar
  16. 16.
    S. Kojima and S. Shimada, Phys. B (Amsterdam, Neth.) 219220, 617 (1996).Google Scholar
  17. 17.
    M. Osada, M. Tada, M. Kakihana, Y. Noguchi, and M. Miyayama, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 120, 95 (2005).Google Scholar
  18. 18.
    Y. L. Du, M. S. Zhang, Q. Chen, and Z. Yin, Appl. Phys. A 76, 1099 (2003).ADSCrossRefGoogle Scholar
  19. 19.
    A. V. Knyazev, M. Mączka, O. V. Krasheninnikova, M. Ptak, E. V. Syrov, and M. Trzebiatowska-Gussowska, Mater. Chem. Phys. 204, 8 (2018).CrossRefGoogle Scholar
  20. 20.
    M. K. Jeon, Y.-I. Kim, S.-H. Nahm, and S. I. Woo, J. Phys. D 39, 5080 (2006).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Anokhin
    • 1
  • Yu. I. Golovko
    • 1
  • V. M. Mukhortov
    • 1
    Email author
  • D. V. Stryukov
    • 1
  1. 1.Federal Research Center, Southern Scientific Center, Russian Academy of SciencesRostov-on-DonRussia

Personalised recommendations