Skip to main content
Log in

Structural, Optical, and Thermoelectric Properties of the ZnO:Al Films Synthesized by Atomic Layer Deposition

  • PHYSICS OF SURFACE AND THIN FILMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Aluminum-doped zinc oxide thin films have been grown by atomic layer deposition at a temperature of 200°C. Using X-ray diffraction, it has been established that the ZnO:Al thin films exhibits the reflections from the (100), (002), (110), and (201) ZnO hexagonal phase planes. The (101) and (102) planes have also been detected by electron diffraction. The ZnO:Al thin films grow smooth with a root-mean-square roughness of Rq = 0.33 nm and characteristic nanocrystallite sizes of ~70 and ~15 nm without additional aluminum or aluminum oxide phases. The transmission at a wavelength of 550 nm with regard to the substrate has been found to be 96%. The refractive indices and absorption coefficients of the ZnO:Al thin films in the wavelength range of 250–900 nm have been determined. The maximum refractive indices and absorption coefficients have been found to be 2.09 at a wavelength of 335 nm and 0.39 at a wavelength of 295 nm, respectively. The optical band gap is 3.56 eV. The resistivity, Seebeck coefficient, and power factor of the ZnO:Al thin films are ∼1.02 × 10–3 Ω cm, –60 μV/K, and 340 μW m–1 K–2 at room temperature, respectively. The maximum power factor attains 620 μW m–1 K–2 at a temperature of 200°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. X. G. Yu, T. J. Marks, and A. Facchetti, Nat. Mater. 15, 383 (2016).

    Article  ADS  Google Scholar 

  2. I. A. Tambasov, V. G. Maygkov, A. S. Tarasov, A. A. Ivanenko, L. E. Bykova, I. V. Nemtsev, E. V. Eremin, and E. V. Yozhikova, Semicond. Sci. Technol. 29, 082001 (2014).

    Article  ADS  Google Scholar 

  3. I. A. Tambasov, V. G. Myagkov, A. A. Ivanenko, I. V. Nemtsev, L. E. Bykova, G. N. Bondarenko, J. L. Mihlin, I. A. Maksimov, V. V. Ivanov, S. V. Balashov, and D. S. Karpenko, Semiconductors 47, 569 (2013).

    Article  ADS  Google Scholar 

  4. I. A. Tambasov, V. G. Myagkov, A. A. Ivanenko, L. E. Bykova, E. V. Yozhikova, I. A. Maksimov, and V. V. Ivanov, Semiconductors 48, 207 (2014).

    Article  ADS  Google Scholar 

  5. C. G. Granqvist, Sol. Energy Mater. Sol. Cells 91, 1529 (2007).

    Article  Google Scholar 

  6. P. D. C. King and T. D. Veal, J. Phys.: Condens. Matter 23, 334214 (2011).

    Google Scholar 

  7. J. Keller, F. Chalvet, J. Joel, A. Aijaz, T. Kubart, L. Riekehr, M. Edoff, L. Stolt, and T. Torndahl, Prog. Photovolt. 26, 13 (2018).

    Article  Google Scholar 

  8. E. Fortunato, P. Barquinha, and R. Martins, Adv. Mater. 24, 2945 (2012).

    Article  Google Scholar 

  9. G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007).

    Article  Google Scholar 

  10. M. Morales-Masis, F. Dauzou, Q. Jeangros, A. Da-birian, H. Lifka, R. Gierth, M. Ruske, D. Moet, A. Hessler-Wyser, and C. Ballif, Adv. Funct. Mater. 26, 384 (2016).

    Article  Google Scholar 

  11. Z. Szabo, Z. Baji, P. Basa, Z. Czigany, I. Barsony, H. Y. Wang, and J. Volk, Appl. Surf. Sci. 379, 304 (2016).

    Article  ADS  Google Scholar 

  12. A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S. P. Harvey, D. E. Proffit, and T. O. Mason, Materials 3, 4892 (2010).

    Article  ADS  Google Scholar 

  13. O. Bierwagen, Semicond. Sci. Technol. 30, 024001 (2015).

    Article  ADS  Google Scholar 

  14. G. Luka, B. S. Witkowski, L. Wachnicki, R. Jakiela, I. S. Virt, M. Andrzejczuk, M. Lewandowska, and M. Godlewski, Mater. Sci. Eng. B 186, 15 (2014).

    Article  Google Scholar 

  15. A. Stadler, Materials 5, 661 (2012).

    Article  ADS  Google Scholar 

  16. Y. L. Liu, Y. F. Li, and H. B. Zeng, J. Nanomater. 2013, 196521 (2013).

    Google Scholar 

  17. G. Korotcenkov, V. Brinzari, and M. H. Ham, Crystals 8, 14 (2018).

    Article  Google Scholar 

  18. G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  ADS  Google Scholar 

  19. J. He and T. M. Tritt, Science (Washington, DC, U. S.) 357, 1369 (2017).

    Google Scholar 

  20. L. D. Hicks and M. S. Dresselhaus, Phys. Rev. B 47, 12727 (1993).

    Article  ADS  Google Scholar 

  21. S. Ortega, M. Ibanez, Y. Liu, Y. Zhang, M. V. Kovalenko, D. Cadavid, and A. Cabot, Chem. Soc. Rev. 46, 3510 (2017).

    Article  Google Scholar 

  22. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).

    Article  ADS  Google Scholar 

  23. C. Yang, D. Souchay, M. Kneiss, M. Bogner, M. Wei, M. Lorenz, O. Oeckler, G. Benstetter, Y. Q. Fu, and M. Grundmann, Nat. Commun. 8, 16076 (2017).

    Article  ADS  Google Scholar 

  24. T. Tynell and M. Karppinen, Semicond. Sci. Technol. 29, 043001 (2014).

    Article  ADS  Google Scholar 

  25. G. Luka, T. A. Krajewski, B. S. Witkowski, G. Wisz, I. S. Virt, E. Guziewicz, and M. Godlewski, J. Mater. Sci.-Mater. Electron. 22, 1810 (2011).

    Article  Google Scholar 

  26. I. A. Tambasov, A. S. Tarasov, M. N. Volochaev, M. V. Rautskii, V. G. Myagkov, L. E. Bykova, V. S. Zhigalov, A. A. Matsynin, and E. V. Tambasova, Phys. E (Amsterdam, Neth.) 84, 162 (2016).

  27. V. G. Myagkov, L. E. Bykova, A. A. Matsynin, M. N. Volochaev, V. S. Zhigalov, I. A. Tambasov, Y. L. Mikhlin, D. A. Velikanov, and G. N. Bondarenko, J. Solid State Chem. 246, 379 (2017).

    Article  ADS  Google Scholar 

  28. I. A. Tambasov, A. S. Voronin, N. P. Evsevskaya, M. N. Volochaev, Y. V. Fadeev, A. S. Krylov, A. S. Aleksandrovskii, A. V. Luk’yanenko, S. R. Abelyan, and E. V. Tambasova, Phys. Solid State 60, 2649 (2018).

    Article  ADS  Google Scholar 

  29. E. Ochoa-Martinez, E. Navarrete-Astorga, J. Ramos-Barrado, and M. Gabas, Appl. Surf. Sci. 421, 680 (2017).

    Article  ADS  Google Scholar 

  30. Q. H. Li, D. L. Zhu, W. J. Liu, Y. Liu, and X. C. Ma, Appl. Surf. Sci. 254, 2922 (2008).

    Article  ADS  Google Scholar 

  31. M. H. Hong, H. Choi, D. I. Shim, H. H. Cho, J. Kim, and H. H. Park, Solid State Sci. 82, 84 (2018).

    Article  ADS  Google Scholar 

  32. S. Saini, P. Mele, H. Honda, D. J. Henry, P. E. Hopkins, L. Molina-Luna, K. Matsumoto, K. Miyazaki, and A. Ichinose, Jpn. J. Appl. Phys. 53, 060306 (2014).

    Article  ADS  Google Scholar 

  33. J. T. Luo, Z. H. Zheng, G. X. Liang, F. Li, and P. Fan, Mater. Res. Bull. 94, 307 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The electron microscopy investigations were carried out on the equipment of the Center of Collective Use of the Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences. We are grateful to F.A. Baron (Krasnoyarsk Scientific Center) for offering the opportunity of working at the growth equipment and critical discussion of the details of the sample preparation process.

Funding

This study was supported by the Russian Science Foundation, project no. 17-72-10079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Tambasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tambasov, I.A., Volochaev, M.N., Voronin, A.S. et al. Structural, Optical, and Thermoelectric Properties of the ZnO:Al Films Synthesized by Atomic Layer Deposition. Phys. Solid State 61, 1904–1909 (2019). https://doi.org/10.1134/S1063783419100354

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419100354

Keywords:

Navigation