Skip to main content
Log in

Excess Conductivity of Anisotropic Inhomogeneous Superconductors Above the Critical Temperature

  • SUPERCONDUCTIVITY
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The theoretical model of conductivity of a layered anisotropic normal metal containing small superconducting ellipsoidal granules with an arbitrary ratio of semiaxes is developed. Calculation data obtained under two simple approximations (self-consistent and Maxwell) are compared. The results may be applied in the analysis of the observed temperature dependence of the conductivity anisotropy in various anisotropic superconductors with the superconducting phase emerging in the form of isolated superconducting granules. The temperature dependence of the electric resistance along and across the conducting layers above and near the superconducting transition temperature is studied experimentally for bridge structures of a varying thickness. It is demonstrated that this resistance and even the effective superconducting transition temperature depend strongly on the bridge thickness (i.e., the number of layers through which the electric current flows). Note that significant differences were observed only for the resistance across the layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

Notes

  1. Ai is always smaller than unity, since \(\sum\nolimits_i {{{A}_{i}}} \) = 1 and Ai > 0 [19]. Therefore, condition ϕs\( \ll \)Ai is more stringent than condition ϕs \( \ll \) 1 of applicability of the Maxwell approximation.

REFERENCES

  1. K. Jung, Met. Mater. 2, 219 (1996).

    Article  Google Scholar 

  2. G. Blumberg, M. Kang, M. V. Klein, K. Kadowaki, and C. Kendziora, Science (Washington, DC, U. S.) 278, 1427 (1997).

    Article  ADS  Google Scholar 

  3. K. A. Müller, J. Phys.: Condens. Matter 19, 251002 (2007).

    ADS  Google Scholar 

  4. B. Keimer, S. A. Kivelson, M. R. Norman, R. Uchida, and J. Zaanen, Nature (London, U.K.) 518, 965 (2015).

    Article  Google Scholar 

  5. M. Rotter, M. Pangerl, M. Tegel, and D. Johrendt, Angew. Chem. 47, 7949 (2008).

    Article  Google Scholar 

  6. J.-H. Chu, J. G. Analytis, C. Kucharczyk, and I. R. Fisher, Phys. Rev. B 79, 014506 (2009).

    Article  ADS  Google Scholar 

  7. Q. Si, R. Yu, and E. Abrahams, Nat. Rev. Mater. 1, 16017 (2016).

    Article  ADS  Google Scholar 

  8. V. Z. Kresin, Y. N. Ovchinnikov, and S. A. Wolf, Phys. Rep. 431, 231 (2006).

    Article  ADS  Google Scholar 

  9. A. A. Sinchenko, P. D. Grigoriev, A. P. Orlov, A. V. Frolov, A. Shakin, D. A. Chareev, O. S. Volkova, and A. N. Vasiliev, Phys. Rev. B 95, 165120 (2017).

    Article  ADS  Google Scholar 

  10. I. Iguchi, T. Yamaguchi, and A. Sugimoto, Nature (London, U.K.) 412, 420 (2001).

    Article  ADS  Google Scholar 

  11. I. Martin, D. Podolsky, and S. A. Kivelson, Phys. Rev. B 72, 060502 (2005).

    Article  ADS  Google Scholar 

  12. P. D. Grigoriev, A. A. Sinchenko, K. K. Kesharpu, A. Shakin, T. I. Mogilyuk, A. P. Orlov, A. V. Frolov, D. S. Lyubshin, D. A. Chareev, O. S. Volkova, and A. N. Vasiliev, JETP Lett. 105, 786 (2017).

    Article  ADS  Google Scholar 

  13. K. K. Kesharpu, P. D. Grigoriev, D. I. Lazeva, and T. I. Mogilyuk, J. Phys.: Conf. Ser. 1238, 012010 (2019). https://doi.org/10.1088/1742-6596/1238/1/012010.

  14. R. Landauer, AIP Conf. Proc. 40, 2 (1978).

    Article  ADS  Google Scholar 

  15. S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, New York, 2002).

    Book  MATH  Google Scholar 

  16. S. S. Seidov, K. K. Kesharpu, P. I. Karpov, and P. D. Grigoriev, Phys. Rev. B 98, 014515 (2018).

    Article  ADS  Google Scholar 

  17. S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, Nat. Mater. 8, 630 (2009).

    Article  ADS  Google Scholar 

  18. J. F. Ge, Z. L. Liu, C. Liu, C. L. Gao, D. Qian, Q. K. Xue, Y. Liu, and J. F. Jia, Nat. Mater. 14, 285 (2015).

    Article  ADS  Google Scholar 

  19. Yu. G. Naidyuk, G. Fuchs, D. A. Chareev, and A. N. Vasiliev, Phys. Rev. B 93, 144515 (2016).

    Article  ADS  Google Scholar 

  20. S. Giordano, J. Electrostat. 58, 59 (2003).

  21. N. Kang, B. Salameh, P. Auban-Senzier, D. Jerome, C. R. Pasquier, and S. Brazovskii, Phys. Rev. B 81, 100509(R) (2010).

Download references

Funding

T.I. Mogilyuk acknowledges support from the Russian Foundation for Basic Research (grant nos. 18-02-01022, 18-02-00280, 18-32-00205, and 19-02-01000). The work of P.D. Grigoriev was supported by state task no. 0033-2019-0001 “Development of Theory of Condensed Matter.” This study was supported in part by the BASIS Foundation for the Advancement of Theoretical Physics and Mathematics. A.A. Sinchenko acknowledges support from the Russian Foundation for Basic Research (grant no. 17-29-10007). The work of A.V. Frolov and A.P. Orlov was supported by the state task for the Kotel’nikov Institute of Radio Engineering and Electronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Mogilyuk.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by D. Safin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogilyuk, T.I., Grigoriev, P.D., Kesharpu, K.K. et al. Excess Conductivity of Anisotropic Inhomogeneous Superconductors Above the Critical Temperature. Phys. Solid State 61, 1549–1552 (2019). https://doi.org/10.1134/S1063783419090166

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419090166

Keywords:

Navigation