Physics of the Solid State

, Volume 61, Issue 8, pp 1363–1369 | Cite as

Semiconductor Behavior and Room Temperature Ferromagnetism in e-Beam Evaporated Co/TiO2 Multilayer Thin Films

  • Md. Faruk HossainEmail author
  • M. A. I. Nahid
  • Md. Sarwar Pervez
  • M. A. Islam


The Co/TiO2 multilayer thin films have been deposited by e-beam evaporation method on glass substrates in vacuum and annealed in air at 773 K for 1 h. The crystal structure, surface morphology, optical properties, electrical properties and magnetic properties of Co/TiO2 multilayer thin films have been systematically investigated. The results showed that the particle sizes were significantly reduced when the samples are annealed and the enlargement of particle size occurred when the samples thickness is increased. The spectroscopic analysis exhibited enhanced transmittance and higher optical band gap of annealed sample than the as-deposited one and it was decreased with sample thickness. The resistivity measurement confirmed resistivity decreament with temperature. Furthermore, by investigating the magnetic properties, room temperature ferromagnetism was observed.


Co/TiO2 multilayer e-beam evaporation method grain size band gap room temperature ferromagnetism 



The authors would like to acknowledge the support of the Department of Applied Physics and Electronic Engineering, Rajshahi University, Central Science Laboratory, Rajshahi University and Atomic Energy Centre, Dhaka for essential samples preparation and characterization. The authors also greatefully appreciate the financial support from the Ministry of Science and Technology of Bangladesh.


The authors declare that there in no conflict of interest.


  1. 1.
    Y. Yamada, H. Toyosaki, A. Tsukazaki, and T. Fukumura, J. Appl. Phys. 96, 5097 (2004).ADSCrossRefGoogle Scholar
  2. 2.
    M. Baghaie Yazdi, M.-L. Goyallon, T. Bitsch, A. Kastner, M. Schlott, and L. Alff, Thin Solid Films 519, 2531 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    J. Philip, A. Punnoose, B. I. Kim, K. M. Reddy, S. Layne, J. O. Holmes, B. Satpati, P. R. Leclair, T. S. Santos, and J. S. Moodera, Nat. Mater. 5, 298 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, and S. Koshihara, Science (Washington, DC, U. S.) 291, 854 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    K. M. Krishnan, A. B. Pakhomov, Y. Bao, P. Blomqvist, Y. Chun, M. Gonzales, K. Griffin, X. Ji, and B. K. Roberts, J. Mater. Sci. 41, 793 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    N. H. Hong, J. Sakai, N. Poirot, and V. Brize, Phys. Rev. B 73, 132404 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, D. M. Treger, Science, 294, 1488 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    H. Ohno, Science (Washington, DC, U. S.) 281, 951 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    J. K. Furdyna, J. Appl. Phys. 64, R29 (1988).ADSCrossRefGoogle Scholar
  10. 10.
    Phtocatalytic Purification and Treatment of Water and Air, Ed. by D. F. Ollis and H. Al-Ekabi (Elsevier, Amsterdam, 1993).Google Scholar
  11. 11.
    S. J. Pearton, S. J Heo, M. Ivill, D. P. Norton, and T. Steiner, Semicond. Sci. Technol. 19, R59 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    M. S. Park, S. K. Kwon, and B. I. Min, Phys. Rev. B 65, 161201(R) (2002).Google Scholar
  13. 13.
    T. Fukumura, Y. Yamada, K. Tamura, and K. Nakajima, Jpn. J. Appl. Phys. 42, 105 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    S. A. Chambers, T. Droubay, C. M. Wang, and A. S. Lea, Appl. Phys. Lett. 82, 1257 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    C. Huang, X. Liu, Y. Liu, and Y. Wang, Chem. Phys. Lett. 432, 468 (2006).ADSCrossRefGoogle Scholar
  16. 16.
    S. Tolansky, Multiple Beam Interferometry of Surface and Films (Oxford Univ. Press, London, 1948).zbMATHGoogle Scholar
  17. 17.
    C. Fan, P. Xue, and Y. Sun, J. Rare Earths 24, 309 (2006).CrossRefGoogle Scholar
  18. 18.
    V. Stengle, S. Bakardjieva, and N. Murafa, J. Mater. Chem. Phys. 114, 217 (2008).CrossRefGoogle Scholar
  19. 19.
    P. Kubelka and F. Munk, Z. Tech. Phys. (Leipzig) 12, 593 (1931).Google Scholar
  20. 20.
    P. Kubelka, J. Opt. Soc. Am. 38, 448 (1948).ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    W. E. Vargas and G. A. Niklasson, Appl. Opt. 36, 5580 (1997).ADSCrossRefGoogle Scholar
  22. 22.
    M. Asemi and M. Ghanaatshoar, Ceram. Int. 42, 6664 (2016).CrossRefGoogle Scholar
  23. 23.
    F. Demichelis, G. Kaniadakis, A. Tagliferro, and E. Tresso, J. Appl. Opt. 26, 1737 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    Young Ran Park and Kwang Joo Kim, Thin Solid Films 484, 34 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    S. M. Sze, Semiconductor Devices: Physics and Technology (Wiley, New York, 2001).Google Scholar
  26. 26.
    J. Ederth, P. Johnsson, G. A. Niklasson, A. Hoel, A. Hultaker, P. Heszler, C. G. Granqvist, A. R. van Doorn, M. J. Jongerius, and D. Burgard, Phys. Rev. B 68, 155410 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    M. Jannesari, M. Asemi, and M. Ghanaatshoar, J. Sol-Gel. Sci. Technol. 83, 181 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Md. Faruk Hossain
    • 1
    Email author
  • M. A. I. Nahid
    • 2
  • Md. Sarwar Pervez
    • 3
  • M. A. Islam
    • 1
  1. 1.Department of Physics, Rajshahi University of Engineering and TechnologyRajshahiBangladesh
  2. 2.Department of Applied Physics and Electronic Engineering, University of RajshahiRajshahiBangladesh
  3. 3.Department of Computer Science and Engineering, Varendra UniversityRajshahiBangladesh

Personalised recommendations