Physics of the Solid State

, Volume 61, Issue 3, pp 402–407 | Cite as

Emission Kinetics of Surface (Bi)Excitons in ZnO Thin Films

  • I. Kh. Akopyan
  • M. E. LabzovskayaEmail author
  • B. V. Novikov
  • V. G. Talalaev
  • J. W. Tomm
  • J. Schilling


The kinetics of near-edge photoluminescence (PL) in ZnO nanofilms prepared by the atomic layer deposition has been investigated. It is established that the kinetics of near-edge PL in 4-nm films is determined to a great extent by surface 2D-exciton (SX) and biexciton (SXX) complexes. The contribution from surface biexcitons is estimated based on a photostimulated change in the surface potential in ZnO films with different thicknesses. Ultrafast dynamics of surface biexcitons in thin films are revealed. It is shown that biexcitons localized near the surface have the shortest radiative lifetime (less than 100 ps) among all bound exciton complexes, which is explained by the large oscillator strength.



I.Kh. Akopyan, M.E. Labzovskaya, and B.V. No-vikov acknowledge the support of the Russian Foundation for Basic Research, project no. 18-03-00754.


  1. 1.
    S. F. Klingshirn, B. K. Meyer, A. Waag, A. Hoffmann, and J. Geurts, Zinc Oxide (Springer, Berlin, 2010).CrossRefGoogle Scholar
  2. 2.
    Y. Kayanuma, Phys. Rev. B 38, 9797 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    S. Wu, L. Cheng, and Q. Wang, Mater. Res. Express 4, 085017 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    H. J. Ko, Y. E. Chen, T. Yao, K. Miyajima, A. Yamamoto, and T. Goto, Appl. Phys. Lett. 77, 537 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    H. D. Sun, T. Makino, K. Tamura, Y. Segava, M. Kavasaki, A. Ohtomo, K. Tamura, and H. Koinuma, Phys. Status Solidi B 229, 867 (2002).ADSCrossRefGoogle Scholar
  6. 6.
    C. H. Chia, Y. J. Lai, T. C. Han, J. W. Chiou, Y. M. Hu, and W. C. Chou, Appl. Phys. Lett. 96, 081903 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    D. Vanmaekelbergh and L. K. van Vugt, Nanoscale 3, 2783 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    M. Ghost, R. S. Ningthoujam, R. K. Vatsa, D. Das, V. Nataraju, S. Gadkari, S. K. Gupta, and D. Bahadur, J. Appl. Phys. 110, 054309 (2011).ADSCrossRefGoogle Scholar
  9. 9.
    I. Kh. Akopyan, M. E. Labzovskaya, A. A. Lisachenko, B. V. Novikov, A. Yu. Serov, V. V. Titov, and N. G. Filosofov, Phys. Solid State 58, 1767 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    I. Kh. Akopyan, M. E. Labzovskaya, B. V. Novikov, A. A. Lisachenko, A. Yu. Serov, and N. G. Filosofov, Phys. Solid State 60, 352 (2018).ADSCrossRefGoogle Scholar
  11. 11.
    M. E. Labzovskaya, I. Kh. Akopyan, B. V. Novikov, A. Yu. Serov, N. G. Filosofov, L. L. Basov, V. E. Drozd, and A. A. Lisachenko, Phys. Proc. 76, 37 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    V. V. Travnikov, A. Freiberg, and S. F. Savikhin, J. Lumin. 47, 107 (1990).CrossRefGoogle Scholar
  13. 13.
    L. Wishmeier, T. Voss, I. Ruckmann, J. Gutowski, A. C. Mofor, A. Bakin, and A. Waag, Phys. Rev. B 74, 195333 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegsels, D. Forster, F. Bertram, J. Christen, A. Hofmann, M. Strassburg, M. Dworzak, and U. Haboeck, Phys. Status Solidi B 241 (2004).Google Scholar
  15. 15.
    Fang-Li Yen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-ping Zhang, and Y. Segawa, Appl. Phys. Lett. 87, 072103 (2005).Google Scholar
  16. 16.
    H. Murotani, D. Akase, Y. Yamada, T. Matsumoto, D. Nakamura, and T. Okada, Appl. Energy Eng., 1011 (2010).Google Scholar
  17. 17.
    M. Schirra, R. Schneider, A. Reiser, G. M. Prinz, M. Feneberg, J. Biskupek, U. Kaiser, C. E. Krill, K. Thonke, and R. Sauer, Phys. Rev. B 77, 125215 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    S. H. Eom, Y.-M. Yu, Y. D. Choi, and C.-S. Kim, J. Cryst. Growth 284, 166 (2005).ADSCrossRefGoogle Scholar
  19. 19a.
    D. Tainoff, B. Masenelli, P. Melinon, A. Belsky, G. Ledoux, D. Amans, C. Dujardin, N. Fedorov, and P. Martin, Phys. Rev. B 81, 115304 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    A. Yamamoto, K. Miyamia, T. Goto, H. J. Ko, and N. Yao, Phys. Status Solidi B 229, 871 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    Fang-Li Yen, Yen-Cheng Lu, Cheng-Yen Chen, Hsiang-Chen Wang, C. C. Yang, Bao-Ping Zhang, and Y. Segawa, Appl. Phys. Lett. 87, 072103 (2005).Google Scholar
  22. 22.
    D. S. Citrin, Phys. Rev. B 50, 23 (1994).CrossRefGoogle Scholar
  23. 23.
    M. Nakaeama, H. Ichida, and H. Nishimura, J. Phys.: Condens. Matter 11, 7653 (1999).ADSGoogle Scholar
  24. 24.
    P. Corfdir, M. A. Anas Mouti, P. A. Stadelmann, E. Papa, J. P. Ansermet, J-D. Ganiére, and B. De-veaud-Plédran, Nanotechnology 22, 285710 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. Kh. Akopyan
    • 1
  • M. E. Labzovskaya
    • 1
    Email author
  • B. V. Novikov
    • 1
  • V. G. Talalaev
    • 2
  • J. W. Tomm
    • 3
  • J. Schilling
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Martin-Luther University, Centre for Innovation Competence SiLi-nanoHalleGermany
  3. 3.Max Born Institute for Nonlinear Optics and Short Pulse SpectroscopyBerlinGermany

Personalised recommendations