Advertisement

Physics of the Solid State

, Volume 60, Issue 12, pp 2450–2456 | Cite as

The Intrinsic Fluorine-Ion Conductivity of Crystalline Matrices of Fluoride Superionics: BaF2 (Fluorite Type) and LaF3 (Tysonite Type)

  • N. I. SorokinEmail author
  • B. P. Sobolev
DIELECTRICS
  • 3 Downloads

Abstract

The intrinsic fluorine-ion conductivity σlat of BaF2 (CaF2 fluorite type) and LaF3 (tysonite type) crystals is studied by the impedance spectroscopy method. These compounds represent two major structural types taken as the basis to form the best nonstoichiometric fluorine-conducting solid electrolytes. The conductivity σlat caused by thermally activated defects is manifested in the field of high temperatures, where conductometric measurements are complicated by pyrohydrolysis. The experiments carried out in inert atmosphere with application of the impedance method have for the first time produced the reliable values of σlat of fluoride crystals in conditions of suppression of pyrohydrolysis (BaF2) or partial pyrohydrolysis (LaF3). Values of the σlat at 773 K for BaF2 and LaF3 crystals grown from melt by the Bridgman method using the vacuum technology are 2.2 × 10–5 and 8.5 × 10–3 S/cm differing by a factor of ~400. The tysonite structural type has been proved feasible for making high-conductivity solid fluoride electrolytes based on the analysis of energy characteristics of formation and migration of anionic defects.

Notes

ACKNOWLEDGMENTS

This study was supported by the Ministry of Science and Highter Education of the Russian Federation within the State assignment of the Federal Scientific and Research Center of Crystallography and Photonics, Russian Academy of Sciences.

The authors are grateful to O.V. Glumov (St. Petersburg State University, St. Petersburg) for LaF3 crystal provided for experiment.

REFERENCES

  1. 1.
    N. I. Sorokin and B. P. Sobolev, Crystallogr. Rep. 52, 842 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    B. P. Sobolev and N. I. Sorokin, Crystallogr. Rep. 59, 807 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    B. P. Sobolev, N. I. Sorokin, and N. B. Bolotina, in Photonic and Electronic Properties of Fluoride Materials, Ed. by A. Tressaud and K. Poeppelmeier (Elsevier, Amsterdam, 2016), p. 465.Google Scholar
  4. 4.
    C. Rongeat, M. Anji Reddy, R. Witter, and M. Fichtner, Appl. Mater. Interfaces 6, 2103 (2014).CrossRefGoogle Scholar
  5. 5.
    A. Duvel, J. Bednarcik, V. Sepelak, and P. Heitjans, J. Phys. Chem. 118, 7117 (2014).CrossRefGoogle Scholar
  6. 6.
    J. Chable, B. Dieudonne, M. Body, C. Legein, M. Crosnier-Lopez, C. Galvin, F. Mauvy, E. Durand, S. Fourcade, D. Sheptyakov, M. Leblanc, and V. Maisonneuve, Dalton Trans. 44, 19625 (2016).CrossRefGoogle Scholar
  7. 7.
    B. P. Sobolev, The Rare Earth Trifluorides, Pt. 1: The High Temperature Chemistry of Rare Earth Trifluorides (Inst. Kristallogr., Inst. d’Estudis Catalans, Moscow, Barcelona, Spain, 2000).Google Scholar
  8. 8.
    M. S. Frant and J. W. Ross, Science (Washington, DC, U. S.) 154, 1553 (1966).ADSCrossRefGoogle Scholar
  9. 9.
    A. A. Potanin, Zh. Ross. Khim. Ob-va im. D. I. Mendeleeva 45, 58 (2001).Google Scholar
  10. 10.
    M. Anji Reddy and M. Fichtner, J. Mater. Chem. 21, 17059 (2011).CrossRefGoogle Scholar
  11. 11.
    E. Barsis and A. Taylor, J. Chem. Phys. 48, 4357 (1968).ADSCrossRefGoogle Scholar
  12. 12.
    A. Hammou, M. Duclot, and V. A. Levitskii, J. Phys. (Fr.) 37, 7 (1976).Google Scholar
  13. 13.
    D. R. Figueroa, A. V. Chadwick, and J. H. Strange, J. Phys. C 11, 55 (1978).ADSGoogle Scholar
  14. 14.
    J. D. Oberschmidt and D. Lazarus, Phys. Rev. B 21, 5823 (1980).ADSCrossRefGoogle Scholar
  15. 15.
    J. Schoonman, Solid State Ionics 1, 121 (1980).CrossRefGoogle Scholar
  16. 16.
    A. V. Chadwick, Solid State Ionics 8, 209 (1983).CrossRefGoogle Scholar
  17. 17.
    I. V. Murin, O. V. Glumov, and Yu. V. Amelin, Zh. Prikl. Khim. 53, 1474 (1980).Google Scholar
  18. 18.
    A. Roos, A. F. Aalders, J. Schoonman, A. F. M. Arts, and H. W. de Wijn, Solid State Ionics 9–10, 571 (1983).Google Scholar
  19. 19.
    A. V. Chadwick, D. S. Hope, G. Jaroszkiewicz, and J. H. Strange, in Fast Ion Transport in Solids, Ed. by P. Vashishta, N. Mundy, and G. K. Shenoy (Elsevier, North Holland, Amsterdam, 1979), p. 683.Google Scholar
  20. 20.
    V. V. Sinitsyn, O. Lips, A. B. Privalov, F. Fujara, and I. V. Murin, J. Phys. Chem. Solids 64, 1201 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    N. I. Sorokin and B. P. Sobolev, in Proceedings of the 1st Russian Crystallographical Congress, Moscow, 2016, p. 413.Google Scholar
  22. 22.
    I. V. Stepanov and P. P. Feofilov, The Growth of Crystals (Akad. Nauk SSSR, Moscow, 1957), p. 229 [in Russian].Google Scholar
  23. 23.
    V. A. Sokolov, Tr. GOI 54, 21 (1983).Google Scholar
  24. 24.
    G. G. Glavin and Yu. A. Karpov, Zavod. Lab. 30, 306 (1964).Google Scholar
  25. 25.
    N. I. Sorokin and M. W. Breiter, Solid State Ionics 99, 241 (1997).CrossRefGoogle Scholar
  26. 26.
    S. N. S. Reddy and R. A. Rapp, J. Electrochem. Soc. 126, 2023 (1979).CrossRefGoogle Scholar
  27. 27.
    A. Roos and J. Schoonman, Solid State Ionics 13, 205 (1984).CrossRefGoogle Scholar
  28. 28.
    H. D. Wiemhofer, S. Harke, and U. Vohrer, Solid State Ionics 40–41, 433 (1990).Google Scholar
  29. 29.
    A. F. Privalov, O. Lips, and F. Fujara, J. Phys.: Condens. Matter 14, 4525 (2002).ADSGoogle Scholar
  30. 30.
    F. H. Spedding and D. C. Henderson, J. Chem. Phys. 54, 2476 (1971).ADSCrossRefGoogle Scholar
  31. 31.
    F. H. Spedding, B. J. Beaudry, D. C. Henderson, and J. Moorman, J. Chem. Phys. 60, 1578 (1974).ADSCrossRefGoogle Scholar
  32. 32.
    M. O’Keeffe and B. G. Hyde, Philos. Mag. 33, 219 (1976).ADSCrossRefGoogle Scholar
  33. 33.
    R. I. Efremova and E. V. Matizen, Izv. SO AN SSSR, Ser. Khim. 2, 3 (1970).Google Scholar
  34. 34.
    W. Shroter and J. Nolting, J. Phys. (Fr.) 41, 6 (1980).Google Scholar
  35. 35.
    O. Greis and M. S. R. Cader, Thermochim. Acta 87, 145 (1985).CrossRefGoogle Scholar
  36. 36.
    A. B. Lidiard, Crystals with the Fluorite Structure, Ed. by W. Hayes (Clarendon, Oxford, 1974), p. 101.Google Scholar
  37. 37.
    S. Kh. Ait’yan and A. K. Ivanov-Shits, Sov. Phys. Solid State 32, 795 (1990).Google Scholar
  38. 38.
    S. M. Shapiro, Superionic Conductors, Ed. by G. D. Ma-han and W. L. Roth (Plenum, New York, 1976), p. 261.Google Scholar
  39. 39.
    W. H. Zachariasen, Acta Crystallogr. 1, 265 (1948).CrossRefGoogle Scholar
  40. 40.
    W. Bollmann, Cryst. Res. Technol. 16, 1039 (1981).Google Scholar
  41. 41.
    P. W. M. Jacobs and S. H. Ong, Cryst. Lattice Defects 8, 177 (1980).Google Scholar
  42. 42.
    J. Schoonman, G. Oversluizen, and K. E. D. Wapenaar, Solid State Ionics 1, 211 (1980).CrossRefGoogle Scholar
  43. 43.
    P. E. Ngoepe, W. M. Jordan, C. R. Catlow, and J. D. Comins, Phys. Rev. B 41, 3815 (1990).ADSCrossRefGoogle Scholar
  44. 44.
    O. Greis and D. J. M. Bevan, J. Solid State Chem. 24, 113 (1978).ADSCrossRefGoogle Scholar
  45. 45.
    N. B. Bolotina, T. S. Chernaya, A. I. Kalyukanov, I. A. Verin, N. I. Sorokin, L. E. Fykin, N. N. Isakova, and B. P. Sobolev, Crystallogr. Rep. 60, 346 (2015).ADSCrossRefGoogle Scholar
  46. 46.
    O. N. Khrykina, N. I. Sorokin, I. A. Verin, N. B. Bo-lotina, and B. P. Sobolev, Crystallogr. Rep. 62, 545 (2017).ADSCrossRefGoogle Scholar
  47. 47.
    N. I. Sorokin, B. P. Sobolev, and M. Breiter, Phys. Solid State 44, 282 (2002).ADSCrossRefGoogle Scholar
  48. 48.
    N. I. Sorokin, Russ. J. Electrochem. 41, 896 (2005).CrossRefGoogle Scholar
  49. 49.
    M. O’Keeffe, Science (Washington, DC, U. S.) 180, 1276 (1973).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Shubnikov Institute of Crystallography, Federal Scientific Research Center Crystallography and Photonics, Russian Academy of SciencesMoscowRussia

Personalised recommendations